RxSwift-Timer源码分析

要学习RxSwift-Timer的实现逻辑,可以先看RxSwift核心逻辑分析。理解RxSwift核心逻辑后,在来学习RxSwift其他类的实现逻辑会事半功倍。

分析RxSwiftTimer之前,我们先看一下Timer的创建的几种方式。

Timer的创建

方法一:传统Timer

   timer = Timer.init(timeInterval: 1, target: self, selector: #selector(timerFire), userInfo: nil, repeats: true)
                RunLoop.current.add(timer, forMode: .default)

方法二:GCD Timer

        gcdTimer = DispatchSource.makeTimerSource()
        gcdTimer?.schedule(deadline: DispatchTime.now(), repeating: DispatchTimeInterval.seconds(1))
        gcdTimer?.setEventHandler(handler: {
            print("hello GCD")
        })
        gcdTimer?.resume()

方法三:CADisplayLink

      cadTimer = CADisplayLink(target: self, selector: #selector(timerFire))
      cadTimer?.preferredFramesPerSecond = 1
      cadTimer?.add(to: RunLoop.current, forMode: .default)
       cadTimer?.isPaused = true

方法四:RxSwift Timer

  timer = Observable.interval(1, scheduler: MainScheduler.instance)
        timer.subscribe(onNext: { (num) in
            //block_1
            print(num)
        })
            .disposed(by: disposeBag)

我们都知道传统的TimerCADisplayLink一样,在runloop mode.default时,UI操作会影响Timer。在runloop mode.common时,Timer不收UI操作影响。gcdTimer不受UI操作影响,计时更精准。
RxSwift Timer下创建的Timer经测试也不受UI操作影响。那它是由上面哪一种方法封装实现的,或者说是另外新的实现方式?带着问题,我们进入RxSwift-Timer源码分析

RxSwift Timer源码分析

一、从Timer的创建入手:

timer = Observable.inter val(1, scheduler: MainScheduler.instance)

进入Timer.swiftinterval源码, ObservableType的扩方法。

 public static func interval(_ period: RxTimeInterval, scheduler: SchedulerType)
        -> Observable {
        return Timer(
            dueTime: period,
            period: period,
            scheduler: scheduler
        )
    }

interval方法源码的调用传入了2个参数:
period是TimeInterval类型,表示执行每一次的时间周期
scheduler是调度者,这里暂不展开说明。

源码中返回Timer对象。进入Timer类的源码:

final private class Timer: Producer {
    fileprivate let _scheduler: SchedulerType
    fileprivate let _dueTime: RxTimeInterval
    fileprivate let _period: RxTimeInterval?

    init(dueTime: RxTimeInterval, period: RxTimeInterval?, scheduler: SchedulerType) {
        self._scheduler = scheduler
        self._dueTime = dueTime
        self._period = period
    }

    override func run(_ observer: O, cancel: Cancelable) -> (sink: Disposable, subscription: Disposable) where O.E == E {
        if self._period != nil {
            let sink = TimerSink(parent: self, observer: observer, cancel: cancel)
            let subscription = sink.run()
            return (sink: sink, subscription: subscription)
        }
        else {
            let sink = TimerOneOffSink(parent: self, observer: observer, cancel: cancel)
            let subscription = sink.run()
            return (sink: sink, subscription: subscription)
        }
    }
}

Timer初始化中保存_scheduler,_dueTime,_period

总结:
1.创建Timer对象,并返回
2.Timer继承自Producer,拥有subscribe方法
3.初始化方法中保存了_scheduler,_dueTime,_period等外界传入的参数。

二、接下来分析Timersubscribe的调用:

 timer.subscribe(onNext: { (num) in
            print(num)
        })

subscribe的逻辑和RxSwift核心逻辑分析的逻辑基本一致,不同的是Timerrun方法调用的Sink.run不再是AnonymousObservableSink,而是 TimerSink。这里也是RxSwift设计的牛逼之处,不同的业务模块由不同的Sink处理。TimerSink中保存了Timer对象至_parent属性。

override func run(_ observer: O, cancel: Cancelable) -> (sink: Disposable, subscription: Disposable) where O.E == E {
        if self._period != nil {
            let sink = TimerSink(parent: self, observer: observer, cancel: cancel)
            let subscription = sink.run()
            return (sink: sink, subscription: subscription)
        }
        else {
          //  .......
        }
    }

进入TimerSinkrun方法:

final private class TimerSink : Sink where O.E : RxAbstractInteger  {
    typealias Parent = Timer

    private let _parent: Parent
    private let _lock = RecursiveLock()

    init(parent: Parent, observer: O, cancel: Cancelable) {
        self._parent = parent
        super.init(observer: observer, cancel: cancel)
    }

    func run() -> Disposable {
        return self._parent._scheduler.schedulePeriodic(0 as O.E, startAfter: self._parent._dueTime, period: self._parent._period!) { state in
            self._lock.lock(); defer { self._lock.unlock() }
            self.forwardOn(.next(state))
            return state &+ 1
        }
    }
}

继续往下找,可以找到schedulePeriodic方法:

    func schedulePeriodic(_ state: StateType, startAfter: TimeInterval, period: TimeInterval, action: @escaping (StateType) -> StateType) -> Disposable {
        let initial = DispatchTime.now() + dispatchInterval(startAfter)

        var timerState = state

        let timer = DispatchSource.makeTimerSource(queue: self.queue)
        timer.schedule(deadline: initial, repeating: dispatchInterval(period), leeway: self.leeway)
        
        // TODO:
        // This looks horrible, and yes, it is.
        // It looks like Apple has made a conceputal change here, and I'm unsure why.
        // Need more info on this.
        // It looks like just setting timer to fire and not holding a reference to it
        // until deadline causes timer cancellation.
        var timerReference: DispatchSourceTimer? = timer
        let cancelTimer = Disposables.create {
            timerReference?.cancel()
            timerReference = nil
        }

        timer.setEventHandler(handler: {
            if cancelTimer.isDisposed {
                return
            }
            timerState = action(timerState)
        })
        timer.resume()
        
        return cancelTimer
    }

代码中使用DispatchSource.makeTimerSource创建的Timer,足以说明RxSwiftTimer使用的是GCDTimer
其实不难理解,GCDTimer不受runloop影响,并且比较计算精准,是用来封装Timer最好的选择。并且 RxSwift很多地方都应用了线程,对于线程RxSwift肯定不会放置不管,因此RxSwift封装了一套属于自己的GCD

     timer.setEventHandler(handler: {
            if cancelTimer.isDisposed {
                return
            }
            timerState = action(timerState)
        })

gcd Timer会不断执行handler代码块.代码块中执行timerState = action(timerState),
那么action是什么?

func run() -> Disposable {
        return self._parent._scheduler.schedulePeriodic(0 as O.E, startAfter: self._parent._dueTime, period: self._parent._period!) { state in
            self._lock.lock(); defer { self._lock.unlock() }
            self.forwardOn(.next(state))
            return state &+ 1
        }
    }

action就是TimerSink.run方法中,调用self._parent._scheduler.schedulePeriodic带入的逃逸闭包block_1.

self._lock.lock(); defer { self._lock.unlock() }
            self.forwardOn(.next(state))
            return state &+ 1

闭包中,调用self.forwardOn(.next(state)),由RxSwift核心逻辑分析中,我们知道它最终会调用到observer.on方法,然后执行到外界订阅时传入的闭包block_1
state &+ 1是位操作,每执行一次会+1

那么RxSwiftTimer该如何停止呢?
Timer是一个无限序列,只要序列完成, 错误 , 销毁,序列就会结束,timer停止。
disposeBag = DisposeBag() 垃圾袋销毁,垃圾袋中的Timer也会销毁。

你可能感兴趣的:(RxSwift-Timer源码分析)