Titanic生存预测2

背景音乐:保留 - 郭顶

上一篇:Titanic生存预测1,主要讲了如何做的特征工程。

这一篇讲如何训练模型来实现预测。

%matplotlib inline
from sklearn import svm, tree, linear_model, neighbors, naive_bayes, ensemble, discriminant_analysis, gaussian_process
from xgboost import XGBClassifier
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn import feature_selection
from sklearn import model_selection
from sklearn import metrics
import pandas as pd
import time
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler

1. 读取数据

path_data = '../../data/titanic/'
df = pd.read_csv(path_data + 'fe_data.csv')

df_data_y = df['Survived']
df_data_x = df.drop(['Survived', 'PassengerId'], 1)

df_train_x = df_data_x.iloc[:891, :]  # 前891个数据是训练集
df_train_y = df_data_y[:891]

2. 特征选择

我选择用GBDT来进行特征选择,这是由决策树本身的算法特性所决定的,每次通过计算信息增益(或其他准则)来选择特征进行分割,在预测的同时也对特征的贡献进行了“衡量”,因此比较容易可视化~

cv_split = model_selection.ShuffleSplit(n_splits = 10, test_size = .3, train_size = .6, random_state = 0) 
gbdt_rfe = feature_selection.RFECV(ensemble.GradientBoostingClassifier(random_state=2018), step = 1, scoring = 'accuracy', cv = cv_split)
gbdt_rfe.fit(df_train_x, df_train_y)
columns_rfe = df_train_x.columns.values[gbdt_rfe.get_support()]
print('Picked columns: {}'.format(columns_rfe))
print("Optimal number of features : {}/{}".format(gbdt_rfe.n_features_, len(df_train_x.columns)))
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (nb of correct classifications)")
plt.plot(range(1, len(gbdt_rfe.grid_scores_) + 1), gbdt_rfe.grid_scores_)
plt.show()

结果显示:

Picked columns: ['Age' 'Fare' 'Pclass' 'SibSp' 'FamilySize' 'Family_Survival' 'Sex_Code' 'Title_Master' 'Title_Mr' 'Cabin_C' 'Cabin_E' 'Cabin_X']
Optimal number of features : 12/24
Titanic生存预测2_第1张图片

大约在5个以上特征的时候,交叉验证集的分数就已经趋于稳定了。说明在现有特征中,有贡献的特征并不多……

最好的结果出现在12个特征的时候。但需要注意的是,比赛的比分不是由你的交叉验证集决定,所以存在一定的偶然性,鉴于特征数量在比较长的跨度上表现接近,因此我觉得有机会的话,特征数量从5到24的每种选择都值得一试。

我个人比较了24个特征和12个特征,表现最好的是24个全选……没试其他的。

然后对特征进行标准化,用以训练:

stsc = StandardScaler()
df_data_x = stsc.fit_transform(df_data_x)
print('mean:\n', stsc.mean_)
print('var:\n', stsc.var_)

df_train_x = df_data_x[:891]
df_train_y = df_data_y[:891]

df_test_x = df_data_x[891:]
df_test_output = df.iloc[891:, :][['PassengerId','Survived']]

3.模型融合

机器学习的套路是:

  1. 先选择一个基础模型,进行训练和预测,最快建立起一个pipeline。
  2. 在此基础上用交叉验证和GridSearch对模型调参,查看模型的表现。
  3. 用模型融合进行多个模型的组合,用投票的方式(或其他)来预测结果。

一般来说,模型融合得到的结果会比单个模型的要好。

在这里,我跳过了步骤1和2,直接进行步骤3。

3.1 设置基本参数

vote_est = [
    ('ada', ensemble.AdaBoostClassifier()),
    ('bc', ensemble.BaggingClassifier()),
    ('etc', ensemble.ExtraTreesClassifier()),
    ('gbc', ensemble.GradientBoostingClassifier()),
    ('rfc', ensemble.RandomForestClassifier()),
    ('gpc', gaussian_process.GaussianProcessClassifier()),
    ('lr', linear_model.LogisticRegressionCV()),
    ('bnb', naive_bayes.BernoulliNB()),
    ('gnb', naive_bayes.GaussianNB()),
    ('knn', neighbors.KNeighborsClassifier()),
    ('svc', svm.SVC(probability=True)),
    ('xgb', XGBClassifier())
]

grid_n_estimator = [10, 50, 100, 300, 500]
grid_ratio = [.5, .8, 1.0]
grid_learn = [.001, .005, .01, .05, .1]
grid_max_depth = [2, 4, 6, 8, 10]
grid_criterion = ['gini', 'entropy']
grid_bool = [True, False]
grid_seed = [0]

grid_param = [
    # AdaBoostClassifier
    {
        'n_estimators':grid_n_estimator,
        'learning_rate':grid_learn,
        'random_state':grid_seed
    },
    # BaggingClassifier
    {
        'n_estimators':grid_n_estimator,
        'max_samples':grid_ratio,
        'random_state':grid_seed
    },
    # ExtraTreesClassifier
    {
        'n_estimators':grid_n_estimator,
        'criterion':grid_criterion,
        'max_depth':grid_max_depth,
        'random_state':grid_seed
    },
    # GradientBoostingClassifier
    {
        'learning_rate':grid_learn,
        'n_estimators':grid_n_estimator,
        'max_depth':grid_max_depth,
        'random_state':grid_seed,

    },
    # RandomForestClassifier
    {
        'n_estimators':grid_n_estimator,
        'criterion':grid_criterion,
        'max_depth':grid_max_depth,
        'oob_score':[True],
        'random_state':grid_seed
    },
    # GaussianProcessClassifier
    {
        'max_iter_predict':grid_n_estimator,
        'random_state':grid_seed
    },
    # LogisticRegressionCV
    {
        'fit_intercept':grid_bool,  # default: True
        'solver':['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
        'random_state':grid_seed
    },
    # BernoulliNB
    {
        'alpha':grid_ratio,
    },
    # GaussianNB
    {},
    # KNeighborsClassifier
    {
        'n_neighbors':range(6, 25),
        'weights':['uniform', 'distance'],
        'algorithm':['auto', 'ball_tree', 'kd_tree', 'brute']
    },
    # SVC
    {
        'C':[1, 2, 3, 4, 5],
        'gamma':grid_ratio,
        'decision_function_shape':['ovo', 'ovr'],
        'probability':[True],
        'random_state':grid_seed
    },
    # XGBClassifier
    {
        'learning_rate':grid_learn,
        'max_depth':[1, 2, 4, 6, 8, 10],
        'n_estimators':grid_n_estimator,
        'seed':grid_seed
    }
]

3.2 训练

对于每个模型都进行调参再组合,不过有的迭代次数较多,为了节省时间我就用了RandomizedSearchCV来简化(还没来得及试验全部GridSearchCV)。

start_total = time.perf_counter()
N = 0
for clf, param in zip (vote_est, grid_param):  
    start = time.perf_counter()     
    cv_split = model_selection.ShuffleSplit(n_splits = 10, test_size = .3, train_size = .6, random_state = 0) 
    if 'n_estimators' not in param.keys():
        print(clf[1].__class__.__name__, 'GridSearchCV')
        best_search = model_selection.GridSearchCV(estimator = clf[1], param_grid = param, cv = cv_split, scoring = 'accuracy')
        best_search.fit(df_train_x, df_train_y)
        best_param = best_search.best_params_
    else:
        print(clf[1].__class__.__name__, 'RandomizedSearchCV')
        best_search2 = model_selection.RandomizedSearchCV(estimator = clf[1], param_distributions = param, cv = cv_split, scoring = 'accuracy')
        best_search2.fit(df_train_x, df_train_y)
        best_param = best_search2.best_params_
    run = time.perf_counter() - start

    print('The best parameter for {} is {} with a runtime of {:.2f} seconds.'.format(clf[1].__class__.__name__, best_param, run))
    clf[1].set_params(**best_param) 

run_total = time.perf_counter() - start_total
print('Total optimization time was {:.2f} minutes.'.format(run_total/60))

4. 预测

投票有两种方式——软投票和硬投票。

  • 硬投票:少数服从多数。
  • 软投票:没研究过,有文章表明,计算的是加权平均概率,预测结果是概率高的。

如果没有先验经验,那么最好是两种投票方式都算一遍,看看结果如何。

对于Titanic生存预测,我发现每次都是硬投票的结果要好。

grid_hard = ensemble.VotingClassifier(estimators = vote_est , voting = 'hard')
grid_hard_cv = model_selection.cross_validate(grid_hard, df_train_x, df_train_y, cv = cv_split, scoring = 'accuracy')
grid_hard.fit(df_train_x, df_train_y)

print("Hard Voting w/Tuned Hyperparameters Training w/bin score mean: {:.2f}". format(grid_hard_cv['train_score'].mean()*100)) 
print("Hard Voting w/Tuned Hyperparameters Test w/bin score mean: {:.2f}". format(grid_hard_cv['test_score'].mean()*100))
print("Hard Voting w/Tuned Hyperparameters Test w/bin score 3*std: +/- {:.2f}". format(grid_hard_cv['test_score'].std()*100*3))
print('-'*10)

grid_soft = ensemble.VotingClassifier(estimators = vote_est , voting = 'soft')
grid_soft_cv = model_selection.cross_validate(grid_soft, df_train_x, df_train_y, cv = cv_split, scoring = 'accuracy')
grid_soft.fit(df_train_x, df_train_y)

print("Soft Voting w/Tuned Hyperparameters Training w/bin score mean: {:.2f}". format(grid_soft_cv['train_score'].mean()*100)) 
print("Soft Voting w/Tuned Hyperparameters Test w/bin score mean: {:.2f}". format(grid_soft_cv['test_score'].mean()*100))
print("Soft Voting w/Tuned Hyperparameters Test w/bin score 3*std: +/- {:.2f}". format(grid_soft_cv['test_score'].std()*100*3))

结果为:

Hard Voting w/Tuned Hyperparameters Training w/bin score mean: 89.70
Hard Voting w/Tuned Hyperparameters Test w/bin score mean: 85.97
Hard Voting w/Tuned Hyperparameters Test w/bin score 3*std: +/- 5.95
----------
Soft Voting w/Tuned Hyperparameters Training w/bin score mean: 90.02
Soft Voting w/Tuned Hyperparameters Test w/bin score mean: 85.52
Soft Voting w/Tuned Hyperparameters Test w/bin score 3*std: +/- 6.07

硬投票得出的预测结果,在测试集上的分数较高,标准差较小,优选硬投票。

5. 提交结果:

用硬投票作为预测的方案,得到结果并提交。

df_test_output['Survived'] = grid_hard.predict(df_test_x)
df_test_output.to_csv('../../data/titanic/hardvote.csv', index = False)

在官网上提交结果,给出的分数是0.81339。


后记

Titanic这个项目很值得一试,在实践的过程中,我参考了一些参赛者在kaggle上分享的kernel,收益良多。

但作为入门项目,重在参与,后面有空了再做一遍,看是否能有提高。

接下来,我会尝试参加猫狗大战。
也就是编写一个算法来分类图像是否包含狗或猫。
这对人类,狗和猫来说很容易,但用算法如何实现呢?拭目以待。

你可能感兴趣的:(Titanic生存预测2)