Matplotlib之scatter()函数

scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)

参数(Parameters)说明:

    x,y:array_like,shape(n,)
        输入数据
    
    s:标量或array_like,shape(n,),可选
        大小以点数^ 2。默认是`rcParams ['lines.markersize'] ** 2`。
    
    c:颜色,顺序或颜色顺序,可选,默认:'b'
        `c`可以是单个颜色格式的字符串,也可以是一系列颜色
        规范的长度为`N`,或一系列`N`数字
        使用通过kwargs指定的`cmap`和`norm`映射到颜色
        (见下文)。请注意,`c`不应该是单个数字RGB或
        RGBA序列,因为这与数组无法区分
        值将被彩色映射。 `c`可以是一个二维数组,其中的
        行是RGB或RGBA,但是,包括单个的情况
        行为所有点指定相同的颜色。
    
    marker:`〜matplotlib.markers.MarkerStyle`,可选,默认值:'o'
        请参阅`〜matplotlib.markers`以获取有关不同的更多信息
        标记分散支持的样式。 `marker`可以是
        该类的实例或特定文本的简写
        标记。
    
    cmap:`〜matplotlib.colors.Colormap`,可选,默认:无
        一个`〜matplotlib.colors.Colormap`实例或注册名称。
        `cmap`仅在`c`是浮点数组时使用。如果没有,
        默认为rc`image.cmap`。
    
    norm:`〜matplotlib.colors.Normalize`,可选,默认:无
        `〜matplotlib.colors.Normalize`实例用于缩放
        亮度数据为0,1。`norm`只有在`c`是一个数组时才被使用
        彩车。如果`None',则使用默认值:func:`normalize`。
    
    vmin,vmax:标量,可选,默认值:无
        `vmin`和`vmax`与`norm`结合使用来标准化
        亮度数据。如果其中任何一个都是`无',那么最小和最大的
        使用颜色数组。请注意,如果你通过一个“规范”实例,你的
        `vmin`和`vmax`的设置将被忽略。
    
    alpha:标量,可选,默认值:无
        alpha混合值,介于0(透明)和1(不透明)之间,
    
    linewidths:标量或array_like,可选,默认值:无
        如果无,则默认为(lines.linewidth,)。
    
    verts:(x,y)的序列,可选
        如果`marker`为None,这些顶点将用于
        构建标记。标记的中心位于
        在(0,0)为标准化单位。整体标记重新调整
        由``s``完成。
    
     edgecolors :颜色或颜色顺序,可选,默认值:无
        如果无,则默认为'face'
    
        如果'face',边缘颜色将永远是相同的
        脸色。
    
        如果它是'none',补丁边界不会
        被画下来。
    
        对于未填充的标记,“edgecolors”kwarg
        被忽视并被迫在内部“面对”。

简单点绘制

  • 按到原点的距离增大点的大小
x = [0,2,4,6,8,10]
y = [0]*len(x)
s = [20*4**n for n in range(len(x))]
plt.scatter(x,y,s=s)
plt.show()
Matplotlib之scatter()函数_第1张图片
image.png
x = [0,2,4,6,8,10]
y = [0]*len(x)
s = [20*2**n for n in range(len(x))]
plt.scatter(x,y,s=s)
plt.show()
Matplotlib之scatter()函数_第2张图片
image.png
import numpy as np
import matplotlib.pyplot as plt


fig=plt.figure(figsize=(8,6))
#Generating a Gaussion dataset:
#creating random vectors from the multivariate normal distribution
#given mean and covariance
mu_vec1=np.array([0,0])
cov_mat1=np.array([[1,0],[0,1]])
X=np.random.multivariate_normal(mu_vec1,cov_mat1,500)
R=X**2
R_sum=R.sum(axis=1)
plt.scatter(X[:,0],X[:,1],color='green',marker='o',
            s=32.*R_sum,edgecolor='black',alpha=0.5)


plt.show()
Matplotlib之scatter()函数_第3张图片
image.png
  • 散点绘制
from matplotlib import pyplot as plt
import numpy as np
# Generating a Gaussion dTset:
#Creating random vectors from the multivaritate normal distribution
#givem mean and covariance

mu_vecl = np.array([0, 0])
cov_matl = np.array([[2,0],[0,2]])

x1_samples = np.random.multivariate_normal(mu_vecl, cov_matl,100)
x2_samples = np.random.multivariate_normal(mu_vecl+0.2, cov_matl +0.2, 100)
x3_samples = np.random.multivariate_normal(mu_vecl+0.4, cov_matl +0.4, 100)

plt.figure(figsize = (8, 6))

plt.scatter(x1_samples[:,0], x1_samples[:, 1], marker='x',
           color = 'blue', alpha=0.7, label = 'x1 samples')
plt.scatter(x2_samples[:,0], x1_samples[:,1], marker='o',
           color ='green', alpha=0.7, label = 'x2 samples')
plt.scatter(x3_samples[:,0], x1_samples[:,1], marker='^',
           color ='red', alpha=0.7, label = 'x3 samples')
plt.title('Basic scatter plot')
plt.ylabel('variable X')
plt.xlabel('Variable Y')
plt.legend(loc = 'upper right')

plt.show()


    import matplotlib.pyplot as plt
    
    fig,ax = plt.subplots()
    
    ax.plot([0],[0], marker="o",  markersize=10)
    ax.plot([0.07,0.93],[0,0],    linewidth=10)
    ax.scatter([1],[0],           s=100)
    
    ax.plot([0],[1], marker="o",  markersize=22)
    ax.plot([0.14,0.86],[1,1],    linewidth=22)
    ax.scatter([1],[1],           s=22**2)
    
    plt.show()



![image.png](http://upload-images.jianshu.io/upload_images/8730384-8d27a5015b37ee97.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

    import matplotlib.pyplot as plt
    
    for dpi in [72,100,144]:
    
        fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
        ax.set_title("fig.dpi={}".format(dpi))
    
        ax.set_ylim(-3,3)
        ax.set_xlim(-2,2)
    
        ax.scatter([0],[1], s=10**2, 
                   marker="s", linewidth=0, label="100 points^2")
        ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
                   marker="s", linewidth=0, label="100 pixels^2")
    
        ax.legend(loc=8,framealpha=1, fontsize=8)
    
        fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
    
    plt.show() 
Matplotlib之scatter()函数_第4张图片
image.png
import matplotlib.pyplot as plt

for dpi in [72,100,144]:

    fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
    ax.set_title("fig.dpi={}".format(dpi))

    ax.set_ylim(-3,3)
    ax.set_xlim(-2,2)

    ax.scatter([0],[1], s=10**2, 
               marker="s", linewidth=0, label="100 points^2")
    ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
               marker="s", linewidth=0, label="100 pixels^2")

    ax.legend(loc=8,framealpha=1, fontsize=8)

    fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")

plt.show() 
Matplotlib之scatter()函数_第5张图片
image.png
import numpy as np
import matplotlib.pyplot as plt

x1 = np.random.randn(20)
x2 = np.random.randn(20)
plt.figure(1)
# you can specify the marker size two ways directly:
plt.plot(x1, 'bo', markersize=20)  # blue circle with size 10 
plt.plot(x2, 'ro', ms=10,)  # ms is just an alias for markersize
plt.show()
Matplotlib之scatter()函数_第6张图片
image.png
plt.scatter(2, 1, s=4000, c='r')
plt.scatter(2, 1, s=1000 ,c='b')
plt.scatter(2, 1, s=10, c='g')
Matplotlib之scatter()函数_第7张图片
image.png
  • 带标签点绘制
import matplotlib.pyplot as plt

x_coords = [0.13, 0.22, 0.39, 0.59, 0.68, 0.74,0.93]
y_coords = [0.75, 0.34, 0.44, 0.52, 0.80, 0.25,0.55]

fig = plt.figure(figsize = (8,5))

plt.scatter(x_coords, y_coords, marker = 's', s = 50)
for x, y in zip(x_coords, y_coords):
    plt.annotate('(%s,%s)'%(x,y), xy=(x,y),xytext = (0, -10), textcoords = 'offset points',ha = 'center', va = 'top')
plt.xlim([0,1])
plt.ylim([0,1])
plt.show()
Matplotlib之scatter()函数_第8张图片
image.png
  • 用曲线把样本分成两类
# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution

import numpy as np
from matplotlib import pyplot as plt

def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))

# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance

mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR

mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector

# Main scatter plot and plot annotation

f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')

#Adding decision boundary to plot

x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)

x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)

plt.show()
Matplotlib之scatter()函数_第9张图片
image.png
  • 直线划分
# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution

import numpy as np
from matplotlib import pyplot as plt

def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
#    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))
    return -x_1 + 1

# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance

mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR

mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector

# Main scatter plot and plot annotation

f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')

#Adding decision boundary to plot

x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)

x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)

plt.show()
Matplotlib之scatter()函数_第10张图片
image.png

你可能感兴趣的:(Matplotlib之scatter()函数)