欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中
图像模糊通过平滑(加权平均)来实现,类似于积分运算。图像锐化则通过微分运算(有限差分)实现,使用一阶微分或二阶微分都可以得到图像灰度的变化值。
图像锐化的目的是增强图像的灰度跳变部分,使模糊的图像变得清晰。图像锐化也称为高通滤波,通过和增强高频,衰减和抑制低频。图像锐化常用于电子印刷、医学成像和工业检测。
简单地,从原始图像中减去一幅平滑处理的钝化图像,也可以实现图像锐化效果,称为钝化掩蔽。
令 f ~ ( x , y ) \tilde{f}(x,y) f~(x,y) 表示平滑图像,则:
g m a s k ( x , y ) = f ( x , y ) − f ~ ( x , y ) g ( x , y ) = f ( x , y ) + k ∗ g m a s k ( x , y ) , k > 0 g_{mask} (x,y) = f(x,y) - \tilde{f}(x,y) \\ g(x,y) = f(x,y) + k * g_{mask}(x,y), k>0 gmask(x,y)=f(x,y)−f~(x,y)g(x,y)=f(x,y)+k∗gmask(x,y),k>0
当 k>1 时,实现高提升滤波;当 k=1 时,实现钝化掩蔽;k<1时,减弱钝化掩蔽。
因此,钝化掩蔽的实现过程是:
(1)对原始图像进行平滑处理,得到平滑图像;
(2)从原始图像中减去平滑图像,产生掩蔽模板;
(3)将原始图像与掩蔽模板加权相加,得到钝化掩蔽。
原图减去模糊图的结果为模板,输出图像等于原图加上加权后的模板,当权重为1得到非锐化掩蔽,当权重大于1成为高提升滤波。
钝化掩蔽没有直接计算和使用梯度算子,但减法运算具有微分运算的特征,因此本质上是梯度算法,可以实现锐化滤波的效果。
# 1.77:图像锐化: 钝化掩蔽
img = cv2.imread("../images/Fig0338a.tif", flags=0)
# 对原始图像进行平滑,GaussianBlur(img, size, sigmaX)
imgGauss = cv2.GaussianBlur(img, (5,5), sigmaX=5)
imgGaussNorm = cv2.normalize(imgGauss,dst=None,alpha=0,beta=255,norm_type=cv2.NORM_MINMAX)
# 掩蔽模板:从原始图像中减去平滑图像
imgMask = img - imgGaussNorm
passivation1 = img + 0.6 * imgMask # k<1 减弱钝化掩蔽
imgPas1 = cv2.normalize(passivation1, None, 0, 255, cv2.NORM_MINMAX)
passivation2 = img + imgMask # k=1 钝化掩蔽
imgPas2 = cv2.normalize(passivation2, None, 0, 255, cv2.NORM_MINMAX)
passivation3 = img + 2 * imgMask # k>1 高提升滤波
imgPas3 = cv2.normalize(passivation3, None, 0, 255, cv2.NORM_MINMAX)
plt.figure(figsize=(10, 7))
titleList = ["1. Original", "2. GaussSmooth", "3. MaskTemplate",
"4. Passivation(k=0.5)", "5. Passivation(k=1.0)", "6. Passivation(k=2.0)"]
imageList = [img, imgGauss, imgMask, imgPas1, imgPas2, imgPas3]
for i in range(6):
plt.subplot(2,3,i+1), plt.title(titleList[i]), plt.axis('off')
plt.imshow(imageList[i], 'gray', vmin=0, vmax=255)
plt.tight_layout()
plt.show()
钝化掩蔽的图像锐化效果如下图所示,注意当 k>1 时,实现高提升滤波;当 k=1 时,实现钝化掩蔽;而当 k<1时则会减弱钝化掩蔽。
(本节完)
版权声明:
youcans@xupt 原创作品,转载必须标注原文链接
Copyright 2021 youcans, XUPT
Crated:2021-11-29
欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中【OpenCV 完整例程】01. 图像的读取(cv2.imread)
【OpenCV 完整例程】02. 图像的保存(cv2.imwrite)
【OpenCV 完整例程】03. 图像的显示(cv2.imshow)
【OpenCV 完整例程】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 完整例程】05. 图像的属性(np.shape)
【OpenCV 完整例程】06. 像素的编辑(img.itemset)
【OpenCV 完整例程】07. 图像的创建(np.zeros)
【OpenCV 完整例程】08. 图像的复制(np.copy)
【OpenCV 完整例程】09. 图像的裁剪(cv2.selectROI)
【OpenCV 完整例程】10. 图像的拼接(np.hstack)
【OpenCV 完整例程】11. 图像通道的拆分(cv2.split)
【OpenCV 完整例程】12. 图像通道的合并(cv2.merge)
【OpenCV 完整例程】13. 图像的加法运算(cv2.add)
【OpenCV 完整例程】14. 图像与标量相加(cv2.add)
【OpenCV 完整例程】15. 图像的加权加法(cv2.addWeight)
【OpenCV 完整例程】16. 不同尺寸的图像加法
【OpenCV 完整例程】17. 两张图像的渐变切换
【OpenCV 完整例程】18. 图像的掩模加法
【OpenCV 完整例程】19. 图像的圆形遮罩
【OpenCV 完整例程】20. 图像的按位运算
【OpenCV 完整例程】21. 图像的叠加
【OpenCV 完整例程】22. 图像添加非中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】24. 图像的仿射变换
【OpenCV 完整例程】25. 图像的平移
【OpenCV 完整例程】26. 图像的旋转(以原点为中心)
【OpenCV 完整例程】27. 图像的旋转(以任意点为中心)
【OpenCV 完整例程】28. 图像的旋转(直角旋转)
【OpenCV 完整例程】29. 图像的翻转(cv2.flip)
【OpenCV 完整例程】30. 图像的缩放(cv2.resize)
【OpenCV 完整例程】31. 图像金字塔(cv2.pyrDown)
【OpenCV 完整例程】32. 图像的扭变(错切)
【OpenCV 完整例程】33. 图像的复合变换
【OpenCV 完整例程】34. 图像的投影变换
【OpenCV 完整例程】35. 图像的投影变换(边界填充)
【OpenCV 完整例程】36. 直角坐标与极坐标的转换
【OpenCV 完整例程】37. 图像的灰度化处理和二值化处理
【OpenCV 完整例程】38. 图像的反色变换(图像反转)
【OpenCV 完整例程】39. 图像灰度的线性变换
【OpenCV 完整例程】40. 图像分段线性灰度变换
【OpenCV 完整例程】41. 图像的灰度变换(灰度级分层)
【OpenCV 完整例程】42. 图像的灰度变换(比特平面分层)
【OpenCV 完整例程】43. 图像的灰度变换(对数变换)
【OpenCV 完整例程】44. 图像的灰度变换(伽马变换)
【OpenCV 完整例程】45. 图像的灰度直方图
【OpenCV 完整例程】46. 直方图均衡化
【OpenCV 完整例程】47. 图像增强—直方图匹配
【OpenCV 完整例程】48. 图像增强—彩色直方图匹配
【OpenCV 完整例程】49. 图像增强—局部直方图处理
【OpenCV 完整例程】50. 图像增强—直方图统计量图像增强
【OpenCV 完整例程】51. 图像增强—直方图反向追踪
【OpenCV 完整例程】52. 图像的相关与卷积运算
【OpenCV 完整例程】53. Scipy 实现图像二维卷积
【OpenCV 完整例程】54. OpenCV 实现图像二维卷积
【OpenCV 完整例程】55. 可分离卷积核
【OpenCV 完整例程】56. 低通盒式滤波器
【OpenCV 完整例程】57. 低通高斯滤波器
【OpenCV 完整例程】58. 非线性滤波—中值滤波
【OpenCV 完整例程】59. 非线性滤波—双边滤波
【OpenCV 完整例程】60. 非线性滤波—联合双边滤波
【OpenCV 完整例程】61. 导向滤波(Guided filter)
【OpenCV 完整例程】62. 图像锐化——钝化掩蔽