本文是对官方文档 的学习笔记。
介绍
Keras model 主要包括以下几个组成部分:
- 结构、配置,它们定义了一个模型的架构,各个部分之间如何连接
- 权重
- 优化器
- 损失函数 和 Metric
利用 Keras API 可以把这些部分打包成一个 model保存, 同时也可以单独保存。 - 以 TensorFlow 模型打包保存(或者 Kears H5 格式)
- 只保存架构 (通常以 JSON 方式保存)
- 只保存权重
太长不看版
最简单的 Save &Load
model = ... # Get model (Sequential, Functional Model, or Model subclass)
model.save('path/to/location')
from tensorflow import keras
model = keras.models.load_model('path/to/location')
下面的文章是对细节的描述
保存整个模型
APIs
-
-
model.save()
ortf.keras.models.save_model()
-
-
tf.keras.models.load_model()
模型可以被保存成2中格式
H5 (Keras 旧格式)
Tensorflow SavedModel 格式(推荐)
使用 model.save() SavedModel 是默认模式, 但是可以指定使用 H5在
save()
中指定 save_format='h5'filename 以
.h5
结尾
Example:
def get_model():
# Create a simple model.
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = keras.Model(inputs, outputs)
model.compile(optimizer="adam", loss="mean_squared_error")
return model
model = get_model()
# Train the model.
test_input = np.random.random((128, 32))
test_target = np.random.random((128, 1))
model.fit(test_input, test_target)
# Calling `save('my_model')` creates a SavedModel folder `my_model`.
model.save("my_model")
# It can be used to reconstruct the model identically.
reconstructed_model = keras.models.load_model("my_model")
# Let's check:
np.testing.assert_allclose(
model.predict(test_input), reconstructed_model.predict(test_input)
)
# The reconstructed model is already compiled and has retained the optimizer
# state, so training can resume:
reconstructed_model.fit(test_input, test_target)
SavedModel 保存了什么?
代码 model.save('my_model') 会生成一个 my_model
文件夹。 该文件夹会包含以下3个文件:
- assets
- saved_model.pb : 模型结构,优化器,Metric 等等
- variables : 文件夹,保存权重
更多详细信息见: SavedModel guide (The SavedModel format on disk).
SavedModel 如何保存客户自定义模型
保存模型及其 layers时,SavedModel格式存储类名称,调用函数,损失和权重(以及配置(如果已实现))。调用函数定义模型/层的计算图。
在没有模型/层配置的情况下,调用函数用于创建一个像原始模型一样存在的模型,该模型可以进行训练,评估并用于预测
尽管如此,在编写自定义模型或图层类时定义get_config和from_config方法始终是一个好习惯。这样,便可以在需要时轻松地更新计算部分。
以下是从SavedModel格式加载自定义layer, 而不覆盖config方法时发生的情况
class CustomModel(keras.Model):
def __init__(self, hidden_units):
super(CustomModel, self).__init__()
self.dense_layers = [keras.layers.Dense(u) for u in hidden_units]
def call(self, inputs):
x = inputs
for layer in self.dense_layers:
x = layer(x)
return x
model = CustomModel([16, 16, 10])
# Build the model by calling it
input_arr = tf.random.uniform((1, 5))
outputs = model(input_arr)
model.save("my_model")
# Delete the custom-defined model class to ensure that the loader does not have
# access to it.
del CustomModel
loaded = keras.models.load_model("my_model")
np.testing.assert_allclose(loaded(input_arr), outputs)
print("Original model:", model)
print("Loaded model:", loaded)
INFO:tensorflow:Assets written to: my_model/assets
WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.
Original model: <__main__.CustomModel object at 0x7f0fbc3f8208>
Loaded model:
Keras H5 格式
Keras H5 会将所有信息都打包进一个 HDF5 文件(和大数据 HDFS 没有关系)。
model = get_model()
# Train the model.
test_input = np.random.random((128, 32))
test_target = np.random.random((128, 1))
model.fit(test_input, test_target)
# Calling `save('my_model.h5')` creates a h5 file `my_model.h5`.
model.save("my_h5_model.h5")
# It can be used to reconstruct the model identically.
reconstructed_model = keras.models.load_model("my_h5_model.h5")
# Let's check:
np.testing.assert_allclose(
model.predict(test_input), reconstructed_model.predict(test_input)
)
# The reconstructed model is already compiled and has retained the optimizer
# state, so training can resume:
reconstructed_model.fit(test_input, test_target)
H5 文件的局限:
External losses & metrics : 通过
model.add_loss()
和model.add_metric()
添加的信息会丢失, 在load 以后要重新添加。 但,如果这部分是通过自定义 Model 类加通过self.add_loss()
和self.add_metric()
加入的, 则会保留在H5 文件中, 因为他们已经是 Model 的一部分了。DAG 中的自定义部分: 例如自定义层不会保存在 H5文件中, 需要开发者在load 以后重新加载。
保存架构
下面讨论仅限于通过 Sequence 和 Functional API 构建的模型,不包括继承 Model 子类
APIs:
- get_config() and from_config()
-
-
tf.keras.models.model_to_json()
andtf.keras.models.model_from_json()
-
get_config() 和 from_config()
config = model.get_config()
会返回一个包括网络结构的 python dict
Layer :
layer = keras.layers.Dense(3, activation="relu")
layer_config = layer.get_config()
new_layer = keras.layers.Dense.from_config(layer_config)
Sequential model:
model = keras.Sequential([keras.Input((32,)), keras.layers.Dense(1)])
config = model.get_config()
new_model = keras.Sequential.from_config(config)
Functional model :
inputs = keras.Input((32,))
outputs = keras.layers.Dense(1)(inputs)
model = keras.Model(inputs, outputs)
config = model.get_config()
new_model = keras.Model.from_config(config)
to_json()
and tf.keras.models.model_from_json()
类似 get_config / from_config 但是会返回 JSON 格式
model = keras.Sequential([keras.Input((32,)), keras.layers.Dense(1)])
json_config = model.to_json()
new_model = keras.models.model_from_json(json_config)
自定义对象
Models and layers
自定义对象的架构一般在 init 和 call 构建,但是他们在内存中以 bytecode 存在,无法转换成JSON 格式(虽然pickle 可以做序列化,但是有风险,而且不能跨平台)。 一个好的解决方案时 ,自定义的对象需要实现 get_config
和 from_config
方法, 并且将该自定义对象注册到 Kears 中。
Custom functions
自定义函数不需要实现get_config, 只要把自定义函数注册到 Kears 里即可。
只加载计算图
model.save("my_model")
tensorflow_graph = tf.saved_model.load("my_model")
x = np.random.uniform(size=(4, 32)).astype(np.float32)
predicted = tensorflow_graph(x).numpy()
该方法的缺点:
- 这种方法中自定义对象无法追溯,也无法重建
- 返回的不是 Keras Model 对象,很难用, 比如无法用 fit 和 predict 函数
虽然有如上缺点, 但是他也有自己的好处, 比如操作简单, 当无法重建自定义类时,可以起到备份的作用。
定义Config 方法
规范:
-
get_config
: 应该返回一个可以JSON 化的 Python dictionary - from_config(config) (classmethod) : 应该返回一个 layer 或者Model 对象
class CustomLayer(keras.layers.Layer):
def __init__(self, a):
self.var = tf.Variable(a, name="var_a")
def call(self, inputs, training=False):
if training:
return inputs * self.var
else:
return inputs
def get_config(self):
return {"a": self.var.numpy()}
# There's actually no need to define `from_config` here, since returning
# `cls(**config)` is the default behavior.
@classmethod
def from_config(cls, config):
return cls(**config)
layer = CustomLayer(5)
layer.var.assign(2)
serialized_layer = keras.layers.serialize(layer)
new_layer = keras.layers.deserialize(
serialized_layer, custom_objects={"CustomLayer": CustomLayer}
)
注册自定义对象
Keras 维护了一个列表,记录了哪些类会产生config。 Keras 维护了一个主列表,上面记录所了所有的内建 layer, model, optimizer, 和 metric classes。 在 from_config
时, Kears 会查表,如果发现一个名字不在表上的对象, 它就会报错。 有几种方法阻止这种报错:
- 在 load 函数中设置自定义对象
-
tf.keras.utils.custom_object_scope
ortf.keras.utils.CustomObjectScope
tf.keras.utils.register_keras_serializable
class CustomLayer(keras.layers.Layer):
def __init__(self, units=32, **kwargs):
super(CustomLayer, self).__init__(**kwargs)
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_config(self):
config = super(CustomLayer, self).get_config()
config.update({"units": self.units})
return config
def custom_activation(x):
return tf.nn.tanh(x) ** 2
# Make a model with the CustomLayer and custom_activation
inputs = keras.Input((32,))
x = CustomLayer(32)(inputs)
outputs = keras.layers.Activation(custom_activation)(x)
model = keras.Model(inputs, outputs)
# Retrieve the config
config = model.get_config()
# At loading time, register the custom objects with a `custom_object_scope`:
custom_objects = {"CustomLayer": CustomLayer, "custom_activation": custom_activation}
with keras.utils.custom_object_scope(custom_objects):
new_model = keras.Model.from_config(config)
In-memory 克隆模型
注意, 这里Clone 只意味着 get_config , from_config 所以只是 Clone 架构。 具体的权重,compilation 都不会复制。
with keras.utils.custom_object_scope(custom_objects):
new_model = keras.models.clone_model(model)
Save & Load 权重
只存储权重在如下场景中可能有优势:
- 存储的模型只用来预测
- 迁移学习
APIs
-
tf.keras.layers.Layer.get_weights()
: 返回 a list of numpy arrays. tf.keras.layers.Layer.set_weights()
把权重从一层转移到另外一层
def create_layer():
layer = keras.layers.Dense(64, activation="relu", name="dense_2")
layer.build((None, 784))
return layer
layer_1 = create_layer()
layer_2 = create_layer()
# Copy weights from layer 2 to layer 1
layer_2.set_weights(layer_1.get_weights())
把权重从一个模型转移到另外一个模型
# Create a simple functional model
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
functional_model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp")
# Define a subclassed model with the same architecture
class SubclassedModel(keras.Model):
def __init__(self, output_dim, name=None):
super(SubclassedModel, self).__init__(name=name)
self.output_dim = output_dim
self.dense_1 = keras.layers.Dense(64, activation="relu", name="dense_1")
self.dense_2 = keras.layers.Dense(64, activation="relu", name="dense_2")
self.dense_3 = keras.layers.Dense(output_dim, name="predictions")
def call(self, inputs):
x = self.dense_1(inputs)
x = self.dense_2(x)
x = self.dense_3(x)
return x
def get_config(self):
return {"output_dim": self.output_dim, "name": self.name}
subclassed_model = SubclassedModel(10)
# Call the subclassed model once to create the weights.
subclassed_model(tf.ones((1, 784)))
# Copy weights from functional_model to subclassed_model.
subclassed_model.set_weights(functional_model.get_weights())
assert len(functional_model.weights) == len(subclassed_model.weights)
for a, b in zip(functional_model.weights, subclassed_model.weights):
np.testing.assert_allclose(a.numpy(), b.numpy())
无状态层
对于无状态层,因为他不会改变数据的顺序与值, 所以添加无状态层不会影响权重恢复。
无状态层: 比如 DropOut 层
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
functional_model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp")
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
# Add a dropout layer, which does not contain any weights.
x = keras.layers.Dropout(0.5)(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
functional_model_with_dropout = keras.Model(
inputs=inputs, outputs=outputs, name="3_layer_mlp"
)
functional_model_with_dropout.set_weights(functional_model.get_weights())
支持从磁盘 写入/读取 的API
权重可以使用 model.save_weights
一如下2种格式保存在磁盘上
- TensorFlow Checkpoint
- HDF5
TensorFlow Checkpoint 是默认模式, 有2中办发可以改变模式。
- save_format 参数: Set the value to save_format="tf" or save_format="h5".
- 文件路径: 如果文件名以 .h5 or .hdf5 结尾 then the HDF5 format is used.
TF Checkpoint format
# Runnable example
sequential_model = keras.Sequential(
[
keras.Input(shape=(784,), name="digits"),
keras.layers.Dense(64, activation="relu", name="dense_1"),
keras.layers.Dense(64, activation="relu", name="dense_2"),
keras.layers.Dense(10, name="predictions"),
]
)
sequential_model.save_weights("ckpt")
load_status = sequential_model.load_weights("ckpt")
# `assert_consumed` can be used as validation that all variable values have been
# restored from the checkpoint. See `tf.train.Checkpoint.restore` for other
# methods in the Status object.
load_status.assert_consumed()
Checkpoint 工作机制
TensorFlow Checkpoint 格式使用对象属性名称保存和恢复权重。例如,tf.keras.layers.Dense层。该层包含两个权重:densed.kernel和densed.bias。将图层保存为tf格式后,生成的检查点将包含键“kernel”和“bias”及其对应的权重值。
注意,attribute/graph edge 是以父对象中使用的名称而不是变量的名称命名的。在下面的示例中考虑CustomLayer。变量CustomLayer.var与键“ var”一起保存,而不是“ var_a”。
详情查看 "Loading mechanics" in the TF Checkpoint guide.
class CustomLayer(keras.layers.Layer):
def __init__(self, a):
self.var = tf.Variable(a, name="var_a")
layer = CustomLayer(5)
layer_ckpt = tf.train.Checkpoint(layer=layer).save("custom_layer")
ckpt_reader = tf.train.load_checkpoint(layer_ckpt)
ckpt_reader.get_variable_to_dtype_map()
{'save_counter/.ATTRIBUTES/VARIABLE_VALUE': tf.int64,
'_CHECKPOINTABLE_OBJECT_GRAPH': tf.string,
'layer/var/.ATTRIBUTES/VARIABLE_VALUE': tf.int32}
迁移学习
原则上说, 只要2个网络有相同的拓扑结构, 他们就可以共享 Checkpoint
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
functional_model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp")
# Extract a portion of the functional model defined in the Setup section.
# The following lines produce a new model that excludes the final output
# layer of the functional model.
pretrained = keras.Model(
functional_model.inputs, functional_model.layers[-1].input, name="pretrained_model"
)
# Randomly assign "trained" weights.
for w in pretrained.weights:
w.assign(tf.random.normal(w.shape))
pretrained.save_weights("pretrained_ckpt")
pretrained.summary()
# Assume this is a separate program where only 'pretrained_ckpt' exists.
# Create a new functional model with a different output dimension.
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(5, name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs, name="new_model")
# Load the weights from pretrained_ckpt into model.
model.load_weights("pretrained_ckpt")
# Check that all of the pretrained weights have been loaded.
for a, b in zip(pretrained.weights, model.weights):
np.testing.assert_allclose(a.numpy(), b.numpy())
print("\n", "-" * 50)
model.summary()
# Example 2: Sequential model
# Recreate the pretrained model, and load the saved weights.
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
pretrained_model = keras.Model(inputs=inputs, outputs=x, name="pretrained")
# Sequential example:
model = keras.Sequential([pretrained_model, keras.layers.Dense(5, name="predictions")])
model.summary()
pretrained_model.load_weights("pretrained_ckpt")
# Warning! Calling `model.load_weights('pretrained_ckpt')` won't throw an error,
# but will *not* work as expected. If you inspect the weights, you'll see that
# none of the weights will have loaded. `pretrained_model.load_weights()` is the
# correct method to call.
如果网络结构不一致, 如何共享 Checkpoint? 这是一个例子
# Create a subclassed model that essentially uses functional_model's first
# and last layers.
# First, save the weights of functional_model's first and last dense layers.
first_dense = functional_model.layers[1]
last_dense = functional_model.layers[-1]
ckpt_path = tf.train.Checkpoint(
dense=first_dense, kernel=last_dense.kernel, bias=last_dense.bias
).save("ckpt")
# Define the subclassed model.
class ContrivedModel(keras.Model):
def __init__(self):
super(ContrivedModel, self).__init__()
self.first_dense = keras.layers.Dense(64)
self.kernel = self.add_variable("kernel", shape=(64, 10))
self.bias = self.add_variable("bias", shape=(10,))
def call(self, inputs):
x = self.first_dense(inputs)
return tf.matmul(x, self.kernel) + self.bias
model = ContrivedModel()
# Call model on inputs to create the variables of the dense layer.
_ = model(tf.ones((1, 784)))
# Create a Checkpoint with the same structure as before, and load the weights.
tf.train.Checkpoint(
dense=model.first_dense, kernel=model.kernel, bias=model.bias
).restore(ckpt_path).assert_consumed()
利用HDF5 格式存储权重
HDF5格式包含按图层名称分组的权重。权重是通过将可训练权重列表与不可训练权重列表(与layer.weights相同)连接而排序的列表。因此,如果模型具有与保存在Checkpoint 中相同的层和可训练状态,则该模型可以使用 HDF5 Checkpoint 。
# Runnable example
sequential_model = keras.Sequential(
[
keras.Input(shape=(784,), name="digits"),
keras.layers.Dense(64, activation="relu", name="dense_1"),
keras.layers.Dense(64, activation="relu", name="dense_2"),
keras.layers.Dense(10, name="predictions"),
]
)
sequential_model.save_weights("weights.h5")
sequential_model.load_weights("weights.h5")
注意,当模型包含嵌套图层时,更改layer.trainable可能导致不同的layer.weights排序。
class NestedDenseLayer(keras.layers.Layer):
def __init__(self, units, name=None):
super(NestedDenseLayer, self).__init__(name=name)
self.dense_1 = keras.layers.Dense(units, name="dense_1")
self.dense_2 = keras.layers.Dense(units, name="dense_2")
def call(self, inputs):
return self.dense_2(self.dense_1(inputs))
nested_model = keras.Sequential([keras.Input((784,)), NestedDenseLayer(10, "nested")])
variable_names = [v.name for v in nested_model.weights]
print("variables: {}".format(variable_names))
print("\nChanging trainable status of one of the nested layers...")
nested_model.get_layer("nested").dense_1.trainable = False
variable_names_2 = [v.name for v in nested_model.weights]
print("\nvariables: {}".format(variable_names_2))
print("variable ordering changed:", variable_names != variable_names_2)
迁移学习
从HDF5加载预训练的权重时,建议将权重加载到原始Checkpoint 模型中,然后将所需的权重/图层提取到新模型中。
def create_functional_model():
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
return keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp")
functional_model = create_functional_model()
functional_model.save_weights("pretrained_weights.h5")
# In a separate program:
pretrained_model = create_functional_model()
pretrained_model.load_weights("pretrained_weights.h5")
# Create a new model by extracting layers from the original model:
extracted_layers = pretrained_model.layers[:-1]
extracted_layers.append(keras.layers.Dense(5, name="dense_3"))
model = keras.Sequential(extracted_layers)
model.summary()