Jensen不等式及其应用

Jensen不等式的形式有很多种,这里重点关注有关于随机变量期望的形式。

1 Jensen不等式

Jensen不等式:已知函数 ϕ : R → R \phi: \mathbb{R}\to\mathbb{R} ϕ:RR为凸函数,则有 ϕ [ E ( X ) ] ≤ E [ ϕ ( X ) ] \phi[\text{E}(X)]\leq \text{E}[\phi(X)] ϕ[E(X)]E[ϕ(X)]

有时候,需要用到离散形式的Jensen不等式: { a j } \{a_j\} {aj}是一系列非负权重,满足 ∑ j = 1 m a j = 1 \sum_{j=1}^m a_j=1 j=1maj=1 { x j } \{x_j\} {xj}是一系列任意实数,对于凸函数 ϕ : R → R \phi: \mathbb{R}\to\mathbb{R} ϕ:RR,有
ϕ ( ∑ j = 1 m a j x j ) ≤ ∑ j = 1 m a j ϕ ( x j ) \phi\left(\sum_{j=1}^m a_j x_j\right) \leq \sum_{j=1}^m a_j \phi(x_j) ϕ(j=1majxj)j=1majϕ(xj)
只需将原期望形式的Jensen不等式中的随机变量取成离散的,并令 P ( X = x j ) = a j P(X=x_j)=a_j P(X=xj)=aj,即可得到上式。

2 条件Jensen不等式

将不等式两边的期望都取为条件期望的形式,不等式依然成立。

条件Jensen不等式:已知函数 ϕ : R → R \phi: \mathbb{R}\to\mathbb{R} ϕ:RR为凸函数,则有 ϕ [ E ( X ∣ Y ) ] ≤ E [ ϕ ( X ) ∣ Y ] \phi[\text{E}(X|Y)]\leq \text{E}[\phi(X)|Y] ϕ[E(XY)]E[ϕ(X)Y]

来看一个应用:在 Var ( X ) < ∞ \text{Var}(X)<\infty Var(X)<的条件下,利用条件Jensen不等式,可以证明 Var [ E ( X ∣ Y ) ] ≤ Var ( X ) \text{Var}[\text{E}(X|Y)]\leq \text{Var}(X) Var[E(XY)]Var(X)

证明如下:
[ E ( X ∣ Y ) − E ( X ) ] 2 = [ E ( X ∣ Y ) ] 2 + [ E ( X ) ] 2 − 2 E ( X ∣ Y ) E ( X ) ≤ E ( X 2 ∣ Y ) + [ E ( X ) ] 2 − 2 E ( X ∣ Y ) E ( X ) \begin{aligned} &[\text{E}(X|Y)-\text{E}(X)]^2 \\ =& [\text{E}(X|Y)]^2+[\text{E}(X)]^2 - 2\text{E}(X|Y)\text{E}(X)\\ \leq & \text{E}(X^2|Y)+[\text{E}(X)]^2 - 2\text{E}(X|Y)\text{E}(X) \end{aligned} =[E(XY)E(X)]2[E(XY)]2+[E(X)]22E(XY)E(X)E(X2Y)+[E(X)]22E(XY)E(X)

两边取期望后,可得
E { { E ( X ∣ Y ) − E [ E ( X ∣ Y ) ] } 2 } ( = Var [ E ( X ∣ Y ) ] ) ≤ E [ E ( X 2 ∣ Y ) ] + [ E ( X ) ] 2 − 2 [ E ( X ) ] 2 = E ( X 2 ) + [ E ( X ) ] 2 − 2 [ E ( X ) ] 2 = Var ( X ) \begin{aligned} &\text{E}\left\{\left\{\text{E}(X|Y)-\text{E}[\text{E}(X|Y)]\right\}^2\right\} \\ (= & \text{Var}[\text{E}(X|Y)])\\ \leq & \text{E}[\text{E}(X^2|Y)]+[\text{E}(X)]^2 - 2[\text{E}(X)]^2\\ = & \text{E}(X^2)+[\text{E}(X)]^2 - 2[\text{E}(X)]^2\\ = & \text{Var}(X) \end{aligned} (===E{{E(XY)E[E(XY)]}2}Var[E(XY)])E[E(X2Y)]+[E(X)]22[E(X)]2E(X2)+[E(X)]22[E(X)]2Var(X)

得证。

3 Jensen不等式的应用

许许多多不等式,都可以利用Jensen不等式得出,这里整理一些例子。

3.1 套用简单函数

ϕ \phi ϕ直接取为简单的凸函数或凹函数,就可以得到许多不等式:

  • [ E ( X ) ] 2 ≥ E ( X 2 ) [\text{E}(X)]^2 \geq \text{E}(X^2) [E(X)]2E(X2)
  • ∣ E ( X ) ∣ ≤ E ∣ X ∣ |\text{E}(X)|\leq \text{E}|X| E(X)EX
  • exp ⁡ [ E ( X ) ] ≤ E [ exp ⁡ ( X ) ] \exp[\text{E}(X)]\leq \text{E}[\exp(X)] exp[E(X)]E[exp(X)]
  • E [ log ⁡ ( X ) ] ≤ log ⁡ [ E ( X ) ] \text{E}[\log(X)]\leq \log[\text{E}(X)] E[log(X)]log[E(X)]
  • E [ X 1 / 2 ] ≤ [ E ( X ) ] 1 / 2 \text{E}[X^{1/2}]\leq [\text{E}(X)]^{1/2} E[X1/2][E(X)]1/2

3.2 Lyapunov不等式

Lyapunov不等式:对于任意 0 ≤ p ≤ q 0\leq p \leq q 0pq,有
[ E ( ∣ X ∣ p ) ] 1 / p ≤ [ E ( ∣ X ∣ q ) ] 1 / q [\text{E}(|X|^{p})]^{1/p} \leq [\text{E}(|X|^{q})]^{1/q} [E(Xp)]1/p[E(Xq)]1/q

证明过程,只需利用凸函数 ϕ ( x ) = x q / p \phi(x)=x^{q/p} ϕ(x)=xq/p,和随机变量 Y = ∣ X ∣ q Y=|X|^q Y=Xq即可。

3.3 几何均值不等式

几何均值不等式(Geometric Mean Inequality): { a j ∣ \{a_j| {aj是一系列非负权重,满足 ∑ j = 1 m a j = 1 \sum_{j=1}^m a_j=1 j=1maj=1 { x j } \{x_j\} {xj}是一系列任意的非负实数,则有
x 1 a 1 x 2 a 2 ⋯ x m a m ≤ ∑ j = 1 m a j x j x_1^{a_1}x_2^{a_2}\cdots x_m^{a_m}\leq \sum_{j=1}^m a_j x_j x1a1x2a2xmamj=1majxj

证明要用到离散形式的Jensen不等式,将 ϕ \phi ϕ取为对数函数即可,由于对数函数是凹函数,不等式需反向。

如果取 m = 2 m=2 m=2 a 1 = a 2 = 1 2 a_1=a_2=\dfrac{1}{2} a1=a2=21,就是在中学阶段熟悉的 x 1 x 2 ≤ x 1 + x 2 2 \sqrt{x_1 x_2}\leq \dfrac{x_1+x_2}{2} x1x2 2x1+x2,即几何均值小于等于代数均值。

3.4 Loeve’s C r C_r Cr Inequality

对于一系列的任意实数 x j x_j xj,有
∣ ∑ j = 1 m x j ∣ r ≤ { ∑ j = 1 m ∣ x j ∣ r , 0 < r ≤ 1 m r − 1 ∑ j = 1 m ∣ x j ∣ r , r > 1 \left| \sum_{j=1}^m x_j \right|^r \leq \begin{cases} \sum\limits_{j=1}^m |x_j|^r&,0\lt r\leq 1\\ m^{r-1} \sum\limits_{j=1}^m |x_j|^r&, r\gt 1 \end{cases} j=1mxjrj=1mxjrmr1j=1mxjr,0<r1,r>1

m = 2 m=2 m=2时,记 C r = max ⁡ { 1 , 2 r − 1 } C_r=\max\{1,2^{r-1}\} Cr=max{1,2r1},该不等式可写为
∣ a + b ∣ r ≤ C r ( ∣ a ∣ r + ∣ b ∣ r ) |a+b|^r\leq C_r \left(|a|^r+|b|^r\right) a+brCr(ar+br)
因此也叫 C r C_r Cr不等式。

证明同样需用到离散形式Jensen不等式。若 r > 1 r\gt 1 r>1,取 a j = 1 / m a_j=1/m aj=1/m ϕ ( x ) = ∣ x ∣ r \phi(x)=|x|^r ϕ(x)=xr,即可得证。若 r ≤ 1 r\leq 1 r1,记 ∑ j = 1 m ∣ x j ∣ = A \sum_{j=1}^m |x_j|=A j=1mxj=A,取 b j = ∣ x j ∣ / A b_j=|x_j|/A bj=xj/A,则 b j ∈ [ 0 , 1 ] b_j\in [0,1] bj[0,1],因此有 b j ≤ b j r b_j\leq b_j^r bjbjr,因此
1 = ∑ j = 1 m b j ≤ ∑ j = 1 m b j r = ∑ j = 1 m ∣ x j ∣ r A r 1=\sum_{j=1}^m b_j\leq \sum_{j=1}^m b_j^r=\dfrac{\sum_{j=1}^m |x_j|^r}{A^r} 1=j=1mbjj=1mbjr=Arj=1mxjr
再利用 ∣ ∑ j = 1 m x j ∣ ≤ ∑ j = 1 m ∣ x j ∣ = A |\sum_{j=1}^m x_j |\leq \sum_{j=1}^m |x_j|=A j=1mxjj=1mxj=A,即可得证。

3.5 范数不等式

范数不等式:对于 0 < p ≤ q 0\lt p\leq q 0<pq,有
∣ ∑ j = 1 m ∣ x j ∣ q ∣ 1 / q ≤ ∣ ∑ j = 1 m ∣ x j ∣ p ∣ 1 / p \left| \sum_{j=1}^m |x_j|^q \right|^{1/q} \leq\left| \sum_{j=1}^m |x_j|^p \right|^{1/p} j=1mxjq1/qj=1mxjp1/p

r = p / q ≤ 1 r=p/q\leq 1 r=p/q1 y j = ∣ x j ∣ q y_j=|x_j|^q yj=xjq,利用上一节中的 C r C_r Cr不等式,可得
∣ ∑ j = 1 m y j ∣ r ≤ ∑ j = 1 m ∣ y j ∣ r \left| \sum_{j=1}^m y_j \right|^r \leq \sum_{j=1}^m |y_j|^r j=1myjrj=1myjr
x j x_j xj代回并两边取 1 / p 1/p 1/p次方即可得证。

你可能感兴趣的:(千里路,数学,不等式)