阅读代码官方的ImageNet例子
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
# 由于计算中有随机性,每次网络前馈结果有差异
# 为了避免这种结果波动,设置 cudnn.deterministic = True
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
# world_size 代表多少个计算节点
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
# 判断是否需要并行训练
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
# 获取节点gpu设备数量
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
# 通过torch.multiprocessing.spawn来开启多进程
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
# rank 表示节点编号(n台节点即:0,1,2,..,n-1)
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
# dist-backend gpu上一般设置为nccl,cpu上设置为gloo
# 根据官网的介绍, 如果是使用cpu的分布式计算, 建议使用gloo, 因为表中可以看到 gloo对cpu的支持是最好的,
# 然后如果使用gpu进行分布式计算, 建议使用nccl, 实际测试中我也感觉到, 当使用gpu的时候, nccl的效率是高于gloo的.
# 根据博客和官网的态度, 好像都不怎么推荐在多gpu的时候使用mpi
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
## 在生成网络对象之前:!!!
# CUDA使用指定显卡,类似export CUDA_VISIBLE_DEVICES=0
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
# pytorch的官网建议使用DistributedDataParallel来代替DataParallel,
# 据说是因为DistributedDataParallel比DataParallel运行的更快, 然后显存分屏的更加均衡.
# 而且DistributedDataParallel功能更加强悍, 例如分布式的模型(一个模型太大, 以至于无法放到一个GPU上运行,
# 需要分开到多个GPU上面执行). 只有DistributedDataParallel支持分布式的模型像单机模型那样可以进行多机多卡的运算.
# 注意要提前把模型加载到gpu, 然后才可以加载到DistributedDataParallel
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# ................
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
# 这步很重要,分布式训练的话需要将train_dataset进行分布式操作
# 将train_dataset送到了DistributedSampler中创造了一个train_sampler, 然后在构造train_loader的时候,
# 参数中传入了一个sampler=train_sampler. 使用这些的意图是, 让不同节点的机器加载自己本地的数据进行训练,
# 也就是说进行多机多卡训练的时候, 不再是从主节点分发数据到各个从节点, 而是各个从节点自己从自己的硬盘上读取数据.
# 使用DistributedSampler来创造一个sampler提供给DataLoader, sampler的作用自定义一个数据的编号,
# 然后让DataLoader按照这个编号来提取数据放入到模型中训练, 其中sampler参数和shuffle参数不能同时指定,
# 如果这个时候还想要可以随机的输入数据, 我们可以在DistributedSampler中指定shuffle参数,
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
# 加载训练数据集 pin_memory用于锁页内存,提升训练速度,若gpu显存不够,修改为False
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
class ImageFolder(DatasetFolder):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
# 图片存储的根目录,即各类别文件夹所在目录的上一级目录。
root (string): Root directory path.
# 对图片进行预处理的操作(函数),原始图片作为输入,返回一个转换后的图片。
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
# 对图片类别进行预处理的操作,输入为 target,输出对其的转换。如果不传该参数,即对 target
# 不做任何转换,返回的顺序索引0,1, 2…
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
# 表示数据集加载方式,通常默认加载方式即可。
loader (callable, optional): A function to load an image given its path.
# 获取图像文件的路径并检查该文件是否为有效文件的函数(用于检查损坏文件)
is_valid_file (callable, optional): A function that takes path of an Image file
and check if the file is a valid_file (used to check of corrupt files)
Attributes:
# 用一个 list 保存类别名称
classes (list): List of the class names.
# 类别对应的索引,与不做任何转换返回的 target 对应
class_to_idx (dict): Dict with items (class_name, class_index).
# 保存(img-path, class) tuple的 list
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader, is_valid_file=None):
super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS if is_valid_file is None else None,
transform=transform,
target_transform=target_transform,
is_valid_file=is_valid_file)
self.imgs = self.samples
class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False)
数据加载器。组合数据集和采样器,并在数据集上提供单进程或多进程迭代器。
参数:
True
时会在每个epoch重新打乱数据(默认: False).shuffle
参数。import torch
import torch.nn as nn
import torch.nn.parallel
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.models as models
# 获取torch.models中已有的models并通过首字母排序
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
#输出结果
# ['alexnet', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'googlenet', 'inception_v3', 'mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0', 'mnasnet1_3', 'mobilenet_v2', 'resnet101', 'resnet152', 'resnet18', 'resnet34', 'resnet50', 'resnext101_32x8d', 'resnext50_32x4d', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0', 'squeezenet1_0', 'squeezenet1_1', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn', 'wide_resnet101_2', 'wide_resnet50_2']
# 选取模型
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
# define loss function (criterion) and optimizer
# 损失函数使用交叉熵,记得cuda
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
# 优化器使用SGD
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# 通过mp.spawn来进行分布式训练。
# multiprocessing包用于在相同数据的不同进程中共享视图。
import torch.multiprocessing as mp
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
# 通过torch.multiprocessing.spawn来开启多进程
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
# 记录最好的结果
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
# rank:表示当前进程id,用于进程间通讯。0代表主机
# ngpus_per_node:表示每个节点的gpu数量。
# (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0)代表只需要保存一次
# 不写的话会保存多次模型
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
# 启用 Batch Normalization 和 Dropout
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
# loss += (label[k] - h) * (label[k] - h) / 2
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
# 梯度置零,也就是把loss关于weight的导数变成0
optimizer.zero_grad()
# 反向传播求梯度
# d_weights = [d_weights[j] + (label[k] - h) * input[k][j] for j in range(n)]
loss.backward()
# 更新所有参数
# weights = [weights[k] + alpha * d_weights[k] for k in range(n)]
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
# rank:表示当前进程id,用于进程间通讯。0代表主机
# ngpus_per_node:表示每个节点的gpu数量。
# (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0)代表只需要保存一次
# 不写的话会保存多次模型
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
import torch.backends.cudnn as cudnn
# 设置这个 flag 可以让内置的 cuDNN 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题。
# 如果网络的输入数据维度或类型上变化不大,可以增加运行效率;
# 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。
cudnn.benchmark = True
# 由于计算中有随机性,每次网络前馈结果有差异
# 为了避免这种结果波动,设置
cudnn.deterministic = True
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
# 不启用 Batch Normalization 和 Dropout。
model.eval()
# 不会track梯度
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
每30轮,学习率缩小10倍
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr