最近在猎聘上爬了一些物流岗位相关的数据,看着这些爬下来的数据,心里就开始痒痒了,想着怎么把数据利用起来,于是开始了可视化的道路。
使用到的工具包为:
数据字段,一共有21个字段
数据量大概17W条。
关注文章下的公众号,回复「猎聘数据」获取相关数据资源
从数据库中加载数据「公众号中的数据为 excel 文件」
from sqlalchemy import create_engine
import pandas as pd
engine=create_engine("mysql+pymysql://用户名:passwd@ip:3306/库")
result = pd.read_sql('select * from liepin', engine)
result
job_city = result['job_city']
word_counts = job_city.value_counts().to_dict()
# 按照字典的value进行排序
data = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)
代码如下:
import pandas as pd
from pyecharts.charts import Bar
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType
# 测试统计
color_function = """
function(params){
if(params.value>=8000){
return '#FF1493';
}else if (7000
注意:如果在notebook中不能展示出柱状图,请参考JupyterNotebook展示Pyecharts图像
经过数据分析,发现数据的salary字段格式有五种格式:薪资面议「不考虑」、6-8k·13薪、3000元/月、100元/日、10-20k
我们统一单位为:K
代码如下:
part_interval = ["5K以下", "5K-10K", "10K-15K", "15K-20K", "20K-30K", "30K-50K", "50K以上"]
level1, level2, level3, level4, level5, level6, level7 = 0, 0, 0, 0, 0, 0, 0
#遍历salary,然后对数据进行划分,取中值为标准,薪资单位为 K
for i in result['salary']:
if str(i) == 'nan' or "面议" in i: # 面议的则不考虑
pass
elif i[-1] == "薪": # 数据中的格式为:6-8k·13薪
x = i.split("·")
month = x[1][:-1]
money = x[0].split("-")
salary = (float(money[0]) + float(money[1][:-1])) / 2 * float(month) / 12
elif i[-3:] == "元/月": # 数据中的格式为: 3000元/月
i = i.replace('元/月', '-元/月')
x = i.split('-')
salary = float(x[0]) / 1000
elif i[-3:] == "元/日": # 数据中的格式为:100元/日 ,此处的天数我假设为工作30天,其实正常22天
i = i.replace('元/日', '-元/日')
x = i.split('-')
salary = float(x[0]) * 30 / 1000
else:
# 正常单位的数据,格式为:10-20k
x = i.split("-")
salary = (float(x[0]) + float(x[1][:-1])) / 2
if salary <= 5:
level1 += 1
if 5 < salary <= 10:
level2 += 1
elif 10 < salary <= 15:
level3 += 1
elif 15 < salary <= 20:
level4 += 1
elif 20 < salary <= 30:
level5 += 1
elif 30 < salary <= 50:
level6 += 1
elif salary > 50:
level7 += 1
salary = 0
from pyecharts.charts import Pie
from pyecharts import options as opts
from pyecharts.globals import ThemeType
x_data = ["5K以下", "5K-10K", "10K-15K", "15K-20K", "20K-30K", "30K-50K", "50K以上"]
y_data = level1, level2, level3, level4, level5, level6, level7
pie = (
Pie(init_opts=opts.InitOpts(width='800px', height='500px',
theme=ThemeType.VINTAGE)) # 设置大小
.add(
series_name="猎聘数据",
data_pair=[list(z) for z in zip(x_data, y_data)],
center=["50%", "55%"], # 设置圆心所在位置
radius=["40%", "60%"], # 设置饼图的内圈和外圈差
# rosetype = True, # 南丁格尔
label_opts=opts.LabelOpts(
position="outside",
formatter=" {b|{b}: }{c} {per|{d}%} ", # 格式为: {b|{b}: }{c} {per|{d}%} {b}:{d}%
background_color="#eee",
border_color="#aaa",
border_width=1,
border_radius=4,
rich={
"a": {"color": "#999", "lineHeight": 12, "align": "center"},
"abg": {
"backgroundColor": "#e3e3e3",
"width": "100%",
"align": "right",
"height": 12,
"borderRadius": [4, 4, 0, 0],
},
"hr": {
"borderColor": "#aaa",
"width": "100%",
"borderWidth": 0.5,
"height": 0,
},
"b": {"fontSize": 12, "lineHeight": 15},
"per": {
"color": "#eee",
"backgroundColor": "#334455",
"padding": [2, 4],
"borderRadius": 2,
},
},
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="招聘岗位的薪酬分布", pos_left='left'), # 设置title的位置
legend_opts=opts.LegendOpts(pos_top="10%", orient="horizontal") # 设置「各薪水类别」所在位置
)
.set_series_opts(
tooltip_opts=opts.TooltipOpts(
trigger="item", formatter="{b}: {c} ({d}%)", # 设置鼠标悬停的提示信息
)
)
)
# pie.render("招聘岗位的薪酬分布.html")
pie.render_notebook()
# make_snapshot(snapshot, pie.render(), "./猎聘数据可视化/招聘岗位的薪酬分布.png", pixel_ratio=10)
result['work_exp'].value_counts()
根据上面的数据分析,可看出,将学历划分为:经验不限、应届生、1年以下、1-3年、3-5年、 5-10年、10年以上
可手动计算出每个学历对应的数目
from pyecharts.charts import Bar
from pyecharts import options as opts
from pyecharts.globals import ThemeType
# V1 版本开始支持链式调用
# 你所看到的格式其实是 `black` 格式化以后的效果
# 可以执行 `pip install black` 下载使用
# .set_colors(["blue","red","black","green","orange"])
# 主题设置: init_opts=opts.InitOpts(theme=ThemeType.VINTAGE) 或者 {"theme": ThemeType.MACARONS}
bar = (
Bar(opts.InitOpts(width='900px', height='500px', theme=ThemeType.VINTAGE))
.add_xaxis(["经验不限", "应届生", "1年以下", "1-3年", "3-5年", "5-10年", "10年以上"])
.add_yaxis("岗位数量", [22733, 281, 1773, 24942, 31251, 24070, 7264])
.reversal_axis() # x、y轴的数据互换
.set_series_opts(label_opts=opts.LabelOpts(position="right")) # 直方图上提示所在位置
.set_global_opts(
title_opts=opts.TitleOpts(title="招聘岗位对经验的要求"), # , subtitle="副标题"
xaxis_opts=opts.AxisOpts(
name='岗位数量',
name_location='middle',
name_gap=35,
# x轴名称的格式配置
name_textstyle_opts=opts.TextStyleOpts(
font_family= 'Times New Roman',
font_size=14,
),
axistick_opts=opts.AxisTickOpts(
# is_show=False, # 是否显示刻度线
is_inside=True, # 刻度线是否在内侧
)
),
yaxis_opts=opts.AxisOpts(
name='经验',
name_location='middle',
name_gap=70,
name_textstyle_opts=opts.TextStyleOpts(
font_family= 'Times New Roman',
font_size=14,
color='black',
# font_weight='bolder',
),
axistick_opts=opts.AxisTickOpts(
# is_show=False, # 是否显示
is_inside=True, # 刻度线是否在内侧
)
),
# 显示工具栏
# toolbox_opts=opts.ToolboxOpts(is_show=True),
)
)
# bar.render("招聘岗位对经验的要求_bar.html")
# make_snapshot(snapshot, bar.render(), "./猎聘数据可视化/招聘岗位对经验的要求_bar.png", pixel_ratio=10)
bar.render_notebook()
result['eduLevel'].value_counts()
from pyecharts.charts import Bar
from pyecharts import options as opts
from pyecharts.globals import ThemeType
bar = (
Bar(opts.InitOpts(width='900px', height='500px', theme=ThemeType.VINTAGE))
.add_xaxis(["学历不限", "中专/中技", "大专", "本科", "硕士", "MBA/EMBA", "博士"])
.add_yaxis("岗位数量", [8145, 1462, 46693, 54673, 1198, 6, 137])
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position="right")) # 直方图上提示所在位置
.set_global_opts(
title_opts=opts.TitleOpts(title="招聘岗位对学历的要求"), # , subtitle="副标题"
xaxis_opts=opts.AxisOpts(
name='岗位数量',
name_location='middle',
name_gap=35,
# x轴名称的格式配置
name_textstyle_opts=opts.TextStyleOpts(
font_family= 'Times New Roman',
font_size=14,
),
# 坐标轴刻度配置项
axistick_opts=opts.AxisTickOpts(
# is_show=False, # 是否显示
is_inside=True, # 刻度线是否在内侧
)
),
yaxis_opts=opts.AxisOpts(
name='学历',
name_location='middle',
name_gap=70,
name_textstyle_opts=opts.TextStyleOpts(
font_family= 'Times New Roman',
font_size=14,
color='black',
# font_weight='bolder',
),
axistick_opts=opts.AxisTickOpts(
# is_show=False, # 是否显示
is_inside=True, # 刻度线是否在内侧
),
),
# 显示工具栏
toolbox_opts=opts.ToolboxOpts(is_show=True),
)
)
# bar.render("招聘岗位对学历的要求_bar_reversal.html")
# make_snapshot(snapshot, bar.render(), "./猎聘数据可视化/招聘岗位对学历的要求_bar.png", pixel_ratio=10)
bar.render_notebook()
利用上面对学历和经验分析获取的数据,绘制饼状图
import pyecharts.options as opts
from pyecharts.charts import Pie
from pyecharts.globals import ThemeType
x_data = ["经验不限", "应届生", "1年以下", "1-3年", "3-5年", "5-10年", "10年以上"]
y_data = [22733, 281, 1773, 24942, 31251, 24070, 7264]
# x_data = ["学历不限", "中专/中技", "大专", "本科", "硕士", "MBA/EMBA", "博士"]
# y_data = [8145, 1462, 46693, 54673, 1198, 6, 137]
pie = (
Pie(init_opts=opts.InitOpts(width='850px', height='500px', theme=ThemeType.VINTAGE)) # 设置大小 width="1600px", height="1000px"
.add(
series_name="猎聘数据",
center=["45%", "55%"],
data_pair=[list(z) for z in zip(x_data, y_data)],
radius=["40%", "60%"],
# rosetype = True, # 南丁格尔
label_opts=opts.LabelOpts(
position="outside",
formatter=" {b|{b}: }{c} {per|{d}%} ", # 格式为: {b|{b}: }{c} {per|{d}%} {b}:{d}%
background_color="#eee",
border_color="#aaa",
border_width=1,
border_radius=4,
rich={
"a": {"color": "#999", "lineHeight": 12, "align": "center"},
"abg": {
"backgroundColor": "#e3e3e3",
"width": "100%",
"align": "right",
"height": 12,
"borderRadius": [4, 4, 0, 0],
},
"hr": {
"borderColor": "#aaa",
"width": "100%",
"borderWidth": 0.5,
"height": 0,
},
"b": {"fontSize": 12, "lineHeight": 15},
"per": {
"color": "#eee",
"backgroundColor": "#334455",
"padding": [2, 4],
"borderRadius": 2,
},
},
),
)
.set_global_opts(
title_opts=opts.TitleOpts(
title="招聘岗位对经验的要求", pos_left='0%'),
legend_opts=opts.LegendOpts(pos_right="5%", orient="vertical", pos_top="5%")
)
.set_series_opts(
tooltip_opts=opts.TooltipOpts(
trigger="item", formatter="{b}: {c} ({d}%)"
)
)
)
pie.render_notebook()
# make_snapshot(snapshot, pie.render(), "./猎聘数据可视化/招聘岗位对经验的要求_pie.png", pixel_ratio=10)
result.groupby(['comp_url', "人数规模"], as_index=False).size()['人数规模'].value_counts()
import json
from pyecharts import options as opts
from pyecharts.charts import PictorialBar
from pyecharts.globals import ThemeType
location = ["1-49人", "50-99人", "100-499人", "500-999人", "1000-2000人", "2000-5000人", "5000-10000人", "10000人以上"]
values = [4636, 4178, 7339, 2560, 1797, 1284, 914, 1100]
c = (
PictorialBar(opts.InitOpts(width='900px', height='500px', theme=ThemeType.VINTAGE))
.add_xaxis(location)
.add_yaxis(
"",
values,
label_opts=opts.LabelOpts(is_show=True, position='right', formatter=" {c}家"), # 设置y轴的标签位置及格式
symbol_size=30, # 调节图形的大小
symbol_repeat="fixed", # 格式有三种,分别为true\false\"fixed" true和fixed均是重复图形,而false图形仅一个 ,fixed与
is_symbol_clip=True, # 是否裁剪图形 好比一个图形表示10,那么值15,则用一个半的图形表示,这就是裁剪
# is_selected = False,
symbol='image://',
)
.reversal_axis()
.set_global_opts(
title_opts=opts.TitleOpts(title="公司人数统计"),
yaxis_opts=opts.AxisOpts(
name='公司人数',
name_location='middle',
axistick_opts=opts.AxisTickOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(opacity=0)
),
name_gap=90,
name_textstyle_opts=opts.TextStyleOpts(
font_family= 'Times New Roman',
font_size=14,
color='black',
# font_weight='bolder',
),
axislabel_opts=opts.LabelOpts(
font_size=12,
font_family='Times New Roman',
),
),
xaxis_opts=opts.AxisOpts(
name='公司数目',
# is_inverse=True, 反向坐标轴
axislabel_opts=opts.LabelOpts(font_size = 14, font_family='Times New Roman'),
name_location='middle',
name_gap=35,
# # x轴名称的格式配置
name_textstyle_opts=opts.TextStyleOpts(
font_family= 'Times New Roman',
font_size=14,
),
# 坐标轴刻度配置项
axistick_opts=opts.AxisTickOpts(
# is_show=False, # 是否显示
is_inside=True, # 刻度线是否在内侧
),
# 坐标轴线的配置
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(
width=1,
color='black',
)
),
),
)
)
c.render_notebook()
# c.render("公司人数统计.html")
# make_snapshot(snapshot, c.render(), "./猎聘数据可视化/公司人数统计.png", pixel_ratio=10)
象形柱状图参数的具体设置及图标相关网站,请参考:https://blog.csdn.net/qq_42571592/article/details/122818791
行业中的数据格式为:政务/公共服务,所以先使用「/」分割,然后在进行统计
import collections
word_list = []
for i in result['企业行业']:
if i:
x = i.split('/')
for j in x:
word_list.append(j)
word_counts = collections.Counter(word_list)
from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
from pyecharts.globals import ThemeType
c = (
WordCloud(opts.InitOpts(width='900px', height='500px', theme=ThemeType.VINTAGE))
.add("",
[(k, v) for k,v in word_counts.items()],
word_size_range=[20, 90], # 单词字体大小范围
shape=SymbolType.ROUND_RECT # # 词云图轮廓
)
.set_global_opts(
title_opts=opts.TitleOpts(title="公司所属行业分布")
)
)
# c.render("公司所属行业分布.html")
c.render_notebook()
# make_snapshot(snapshot, c.render(), "./猎聘数据可视化/公司所属行业分布.png", pixel_ratio=10)
import collections
word_list = []
for i in result['welfare']:
if i:
x = i.split('|')
for j in x:
word_list.append(j)
word_counts = collections.Counter(word_list)
word_counts
from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
from pyecharts.globals import ThemeType
c = (
WordCloud(opts.InitOpts(width='900px', height='500px', theme=ThemeType.VINTAGE))
.add(
series_name="职位福利分析",
data_pair = [(k, v) for k,v in word_counts.items()],
word_size_range=[20, 100],
shape="cursive",
)
.set_global_opts(title_opts=opts.TitleOpts(title="职位福利"))
# .render("公司所属行业分布.html")
)
# c.render("职位福利.html")
c.render_notebook()
# make_snapshot(snapshot, c.render(), "./猎聘数据可视化/职位福利.png", pixel_ratio=10)
Pyecharts直角坐标系图:象形柱状图 PictorialBar
欢迎大家在评论区留言,知无不言,言无不尽。感觉不错的话,别忘了点赞收藏哦!