移动面积算法——捕捉移动波峰

一、为什么使用移动面积算法

移动面积算法——捕捉移动波峰_第1张图片

 

 

 解:常规波峰判定是采用高低阈值的方法进行筛除,但会出现如图情况。左边噪声高于实际波峰(绿色)高度,甚至高于阈值(红色),会造成波峰高度的误判等。

 

二、移动面积算法的雏形与原理

移动面积算法——捕捉移动波峰_第2张图片

 

 

 选定矩形(mask),此处我设其宽为波峰的1/2,高为波峰最高,面积为S2。通过mask在I-V图中,从左到右移动,计算出每一次移动后mask捕捉到的波峰面积(黄色),黄色面积为S1。

  通过ratio = S1 / S2,将得到每一个 mask 位置不一样的黄色面积占比,我称之为 ratio。如图,明显可见最右边的 mask 中,黄色占比大于50%(或0.5)。则阈值考量可以设置为0.5~1之间,具体须看实际数据。

  ratio > 0.5 时,则 mask 捕捉到了波峰位置。

  而且值得注意的是,图二和图一的峰的横坐标位置不一致,由此可见移动面积算法存在高灵活性的巨大优势。

 

三、代码注释0~7的细解:

0. 限制范围0.1V~1.1V (排除0.1V附近的干扰噪声)

 

1. 计算峰最高点位置,坐标(V, Imax)

 

2. 确定移动矩形(称之为mask) 的长和宽,delta_I 和delta_V

 

3. 确定 mask 移动的初始电压位置(X轴)为0.1V, 限制范围:0A面积:
area = (Vn - Vn-1) * (In + In-1)/2 ;

比值: # mask从横坐标左往右移动,分别计算并保存每次的ratio值
ratio = 峰波形在mask 所占面积 / mask 总面积 ;

 

4. 从保存的所有ratio 值,求最大ratio(最大ratio值大于0.5,则可说明波峰存在)

 

5.五点法确定峰顶点位置

(1)从保存的所有ratio 值,求ratio>0.7 的数量 # 标准峰型通常为30个,此数量体现峰的宽度,筛除脉冲形状的峰
(2)五点法,前三点上升沿与后三点下降沿,判断峰是否为峰,代码中满足①②时皆为波峰顶点,③存在情况过多且不符。

移动面积算法——捕捉移动波峰_第3张图片

 

 

 

6. 计算单峰面积(不包括其余噪声,即从峰宽两侧算起) # 面积算法(包括噪声)

此计算公式存在些许不足,有一定偏差,可忽视不用。

 

7. fitter 滤波。

拟合波形,多项式拟合法。作参考。 # 目前屏蔽,暂时不用

 

 

 

四、全篇代码:

def get_moverectangleratiovalue(volts, diffcrnts, weno, movevspos=0.1, detwidth=0.1, noise_line=0, ratiothreshold=0.40, ratiocntlimit=0):     #--Mei
    """Get moving rectangle mask ratio value.(Area of interest is called mask.)
    The area occupancy ratio
    Args:
        volts (list) -- List of voltages (float) in volts
        diffcrnts (list) -- List of hybrid-to-base current differences (float) in amps
        weno(int) -- we number
        detwidth (float) -- The width of the interval used to detect the calculated mask voltage range(Usually 0~0.2V)
        movevspos (float) -- The starting voltage value used to move the mask (Usually 0~0.5V)
        noise_line (float) -- Below the apparent noise line is noise, and the ampere value of the noise line is used as
                              the baseline for mask calculation
        ratiothreshold (float) -- In the mask, the threshold of the ratio of the waveform area to the total area of the mask
                             rectangle (threshold size: 0~1) If there is a peak, usually 0.5~1
        ratiocntlimit (int) -- Determines the peak width.If the ratio count(>0.5)is greater than the limit,

    Returns: result (bool) -- Determine whether there is a peak by this ratio and return the result.
                                  If the ratio is higher than "ratiothreshold" return True,
                                  and lower than "ratiothreshold" return False.
             ratio (float*1.00) -- The ratio of the area of the waveform to the area of the mask
             ampere_max (float) -- Maximum current value
             peakmainarea (float) -- Peak area except for noise range(not the peak range)
    """
    # init parameter
    result = False
    result_code = 0        # Tracing the cause of NEG results (0 ~ 5) 0 means POS result. Other means NEG.
    limit_volts = []    # V>0
    limit_amps = []     # when V>0
    peak_pos = (0, 0)           # max peak pos (V, A)
    mask_wavearea = 0
    mask_waveareamovelist = []
    ratio_list = []
    list_area = []
    ratio_cnt = 0
    peakposlis = []

    def find_cmax(volts, diffcrnts, detv1=0.1, detv2=1.0):
        # Find max diff current value
        maxcrnt = -1e20
        maxv = 9  # Impossibly large value
        for x, volt in enumerate(volts):
            if volt < detv1:
                continue
            if volt > detv2:
                break
            if diffcrnts[x] > maxcrnt:
                maxcrnt = diffcrnts[x]
                maxv = volts[x]
        return (maxcrnt, maxv)
    # Normally we will set the noise to 0 or to 2.5e-8 A(real noise) in order to count.

    for index, volt in enumerate(volts):
        if volt >= movevspos:   # Usually the point before 0.1V is not used as a reference.
            limit_volts.append(volt)
            limit_amps.append(diffcrnts[index])
    if len(limit_amps) <= 0:
        limit_amps.append(0)
    # current_max = max(limit_amps)
    # current_max = get_peakdetectionvalue

    # 0. Ensure that 'limit_volts' and 'ratio_list' list have the same number of indexes
    current_max, volt_max  = find_cmax(volts, diffcrnts)
    if current_max < noise_line:     # noise line is 0 to 2.5e-8(A)
        print("return False: Max ampere is lower than noise line")
        result_code = 1
        return False, 0.05, 0, 0

    # print("===================================================================")
    # 1.The first "for" loop is for finding the peak pos
    for x, volt in enumerate(volts):
        # Now I limit the first voltage start value (volt > 0).
        if diffcrnts[x] == current_max and volt >= 0:
            # find max peak point pos (volt, ampere)
            peak_volt = volts[x]
            peak_pos = (peak_volt, current_max)

    # 2.The second "for" loop is for finding the valley pos.
    # Now that the valley pos is not used, if there is a better way to judge the valley pos ??
    for x, volt in enumerate(volts):
        if volt > 0 and volt < peak_pos[0] and diffcrnts[x-1] < noise_line and diffcrnts[x] >= noise_line:
            valley_pos = (volt, diffcrnts[x])

    # Mask is the valley pos(x_min, y_min) between peak pos(x_max,y_max) of rectangle area.
    delta_V = detwidth #(peak_pos[0] - valley_pos[0])
    # Don't pay attention to the impact of noise line for now.(Reserved for subsequent development.)
    delta_A = (peak_pos[1] - noise_line)        # eliminate noise about 0.25e-7 or lower.
    mask_totalarea = delta_V * delta_A
    # print("mask total area = %s" % mask_totalarea)

    # 3. The third "for" loop is for calculating every moving wave area on mask.
    def mask_algorithm(volts, diffcrnts, noise_line, movevspos):
        for x, volt in enumerate(volts):
            # Determine the starting point pos of the mask
            # checking mask range
            mask_Vmax = volt + delta_V      # new range from max volt of mask
            mask_rect = (volt, noise_line, mask_Vmax, peak_pos[1])     # (Vmin,Amin,Vmax,Amax)

            if volt >= movevspos:    # movevspos or the first volt.This is defined mask moving start pos.
                # count the wave area on mask
                mask_wavearea = 0       # reset new wave area is 0
                for index, v in enumerate(volts):
                    # Use this FOR loop to count waveform surface base in rectangular area.
                    # Only count the waveform area of the rectangular area.
                    if v >= volt and v <= mask_Vmax:
                        # Each cycle calculates a slice in the mask,
                        # and each slice is determined by two adjacent points of VOLT.
                        ampere2 = diffcrnts[index]
                        ampere1 = diffcrnts[index - 1]
                        # Ensure that diffcrnts are larger than the noise line.Otherwise equal to the noise line.
                        if diffcrnts[index] < noise_line:
                            ampere2 = noise_line
                        if diffcrnts[index - 1] < noise_line:
                            ampere1 = noise_line
                        if diffcrnts[index] > peak_pos[1]:
                            ampere2 = peak_pos[1]
                        if diffcrnts[index - 1] > peak_pos[1]:
                            ampere1 = peak_pos[1]

                        # Only count ampere more than noise_line 0.25(e-7)
                        # area = (V1-V2)*(A2+A1-3*A0)/2;  A0 = 0
                        area = (v - volts[index - 1]) * (ampere2 + ampere1 - (3 * noise_line)) / 2
                        # print("area = (%s - %s) * (%s + %s -3(%s)) / 2 = %s" % (volts[index], volts[index-1], ampere2, ampere1, noise_line, area))
                        mask_wavearea += area
                        list_area.append(area)

                # print("every mask area = %s" % mask_wavearea)
                # print("********************* every wave area is equaled all slice area ************************")
                mask_waveareamovelist.append(mask_wavearea)
                # print("mask wave area = %s" % mask_wavearea)
        # 3.1 Save the waveform to the mask area ratio
        for singlearea in mask_waveareamovelist:
            ratio_list.append(round(singlearea / mask_totalarea, 5))
        # print(ratio_list)
        # print("++++++++++++++++++++++++++ all for loop end +++++++++++++++++++++++++++++++++ ")
    # 3. Calculating every moving wave area on mask.
    mask_algorithm(volts, diffcrnts, noise_line, movevspos)

    # 4.When there is more than one peak or no peak, the judgment result is False.
    ratio = max(ratio_list)

    def multipeaks_screen(ratio, ratio_cnt, result, result_code):
        maxratio = 0
        if ratio >= ratiothreshold:
            # if someone scale more than ratio threshold(usually 0.5)    计数:比值大于阈值的情况
            for rat in ratio_list:
                if rat >= ratiothreshold:
                    ratio_cnt += 1
            if ratio_cnt > 30:          # ratio_cnt 体现的是峰的宽度,ratio_cnt 越大峰越宽。
                result_code = 3
                result = False
                maxratio = 0
            # print("weno = %s,  ratio count = %s, max-ratio = %s" % (weno, ratio_cnt, ratio))
            # Normally it is 30. You can also use the PRINT above to check the ratio count of the normal peak shape.
            if ratio_cnt > ratiocntlimit and ratio_cnt <= 30:
                # If the ratio count is greater than the limit, the waveform is too wide.
                result = False
                maxratio = ratio
                # If the waveform is too wide, we need confirm the waveform is whether the waveform is multiple peaks.
                if ratio_cnt <= 25 and ratio_cnt > 0:
                    peak_cnt = 0
                    volts_xlist = []

                    for i, v in enumerate(volts):
                        volts_xlist.append(i)
                    for x, ratio_x in enumerate(ratio_list):
                        # If there is not noly one peak(maybe more), I set a limit for cheaking a thing called'AS A PEAK'.

                        if ratio_x > ratiothreshold:        # 五点法确定峰顶点位置
                            if x > 2 and x+2 <= len(ratio_list)-1 :#and x % 2 == 0:
                                if (ratio_x - ratio_list[x-1]) >= 0 and (ratio_x - ratio_list[x+1]) >= 0:
                                    if (ratio_list[x-2] - ratio_list[x-1]) < 0 and (ratio_list[x+1] - ratio_list[x+2]) > 0:

                                        # Limit the peak appearing before 0.2V, which is regarded as invalid.
                                        if limit_volts[x] > 0.4 and limit_volts[x] < 1.1:
                                            peak_cnt += 1
                                            maxratio = ratio_x
                                            # peakposlis.append((volts[x], diffcrnts[x]))     # log peak pos(Shaped like a peak)
                                            # print("Peak pos = (%s, %s); index = %s" % (volts[x], diffcrnts[x], x))
                                            # print("Peak volt pos= %s" % (limit_volts[x]))
                    # print("peak cnt = %s" % peak_cnt)
                    if peak_cnt > 1 or peak_cnt == 0:
                        result = False
                        maxratio = 0
                        result_code = 4
                    if peak_cnt == 1:
                        result = True
            # else:
            #     result = True
        else:
            result_code = 2
        return  maxratio, ratio_cnt, result, result_code

    # 5.  Multi peaks screening
    ratio, ratio_cnt, result, result_code = multipeaks_screen(ratio, ratio_cnt, result, result_code)

    def calculate_area(x, noiseline, volts):
        # Area calculation formula
        a2 = diffcrnts[x]
        a1 = diffcrnts[x - 1]
        area = (volts[x] - volts[x - 1]) * (a2 + a1 - (3 * noiseline)) / 2
        return area

    # 6. Calculate the only one peak area
    if result:      # 多峰筛除之后,Ture结果进行
        # calculate peak area 计算单峰面积
        peakposlis.append(peak_pos)
        # print(peak_pos)
        peakarealis = []
        temp_min = peak_pos[1]/2
        log_index = 0
        if peakposlis != []:

            for m, (x, y) in enumerate(peakposlis):
                for n, volt in enumerate(volts):
                    if volt > 0.3:
                        value = abs(diffcrnts[n] - (y/2))   # half peak high 半峰高度与
                        if value <= temp_min:
                            temp_min = value
                            log_index = n
                # print(peakposlis[m][0])
                # print(volts[log_index])
                min_halfwidth = round(abs(peakposlis[m][0] - volts[log_index]), 4)
                # print("min_halfwidth=%s" % min_halfwidth)

                x_min = peakposlis[m][0] - (min_halfwidth * 2)
                x_max = peakposlis[m][0] + (min_halfwidth * 2)
                # print("x_min=%s, x_max=%s" % (x_min,x_max))
                peakarea = 0
                for index, v in enumerate(volts):
                    if v >= x_min and v <= x_max:
                        peakarea += calculate_area(index, noise_line, volts)
                # print("peak area = %s" % peakarea)
                peakarealis.append(peakarea)

        peakmainarea = 0
        maxv = 0
        for peakarea in peakarealis:
            if maxv < peakarea:
                maxv = peakarea
        peakmainarea = maxv
        if peakmainarea == 0:
            result = False
            result_code = 4
        ra_index = ratio_list.index(max(ratio_list, key=abs))
        # print("ratio max index = %s " % ra_index)
        # print("===========================================================================")
    else:
        peakmainarea = 0

    # 7.
    if not result and dglobs.fiter_enable and False:  # debug fitting and sum res
        # Before fitting debug
        befo_maxratio = ratio
        befo_res = result
        calculate_y = fitter.polynomial_fittodraw(volts, diffcrnts, 12, weno)    # only a fiter and draw to show

        # Fit the original data and output fitted current data
        diffs_fited = fitter.polynomial_fitting(volts, diffcrnts, 15)   # complex degree = 15
        mask_algorithm(volts, diffs_fited, noise_line, movevspos)

        after_maxratio = max(ratio_list)
        after_res = None
        if after_maxratio > ratiothreshold:
            after_res = True

        else:
            after_res = False
            result_code = 5
        result = after_res
        # print("enable fitter and adjust result")
    # getamps_leastsquarefitting(volts, diffcrnts)
    # print("-----------------Area-Mei----------------")
    # print("we: %s, res: %s, ratio: %s, A max: %s, peak area: %s"
    #       % (weno, result, ratio, current_max, peakmainarea))
    # debug+
    # calculate_y = fitter.polynomial_fittodraw(volts, diffcrnts, 12, weno)  # only a fiter and draw to show
    # time.sleep(1)

    # Save volt (value/pos) of the max ampere
    # for index, volt in enumerate(volts):
    #     if diffcrnts[index] == current_max:
    #         dglobs.allwes_peakpos.append(volt)

    # debug+
    # print("weno = %s,  ratio count = %s, max-ratio = %s" % (weno, ratio_cnt, ratio))
    # print("result code = %s" % result_code)
    return result, ratio, current_max, peakmainarea, result_code

 

你可能感兴趣的:(移动面积算法——捕捉移动波峰)