题目链接:http://poj.org/problem?id=1860
题目大意就是判断一个有向图中的是否存在正权环。利用Bellman-ford判断负环的思想,改为求最长路,如果在n-1次后再来一次bellman,如果还能更新,那么就是存在正权环。
SPFA:
1 //STATUS:G++_AC_0MS_728KB 2 #include<stdio.h> 3 #include<stdlib.h> 4 #include<string.h> 5 #include<math.h> 6 #include<iostream> 7 #include<string> 8 #include<algorithm> 9 #include<vector> 10 #include<queue> 11 #include<stack> 12 using namespace std; 13 #define LL __int64 14 #define pii pair<int,int> 15 #define Max(a,b) ((a)>(b)?(a):(b)) 16 #define Min(a,b) ((a)<(b)?(a):(b)) 17 #define mem(a,b) memset(a,b,sizeof(a)) 18 #define lson l,mid,rt<<1 19 #define rson mid+1,r,rt<<1|1 20 const int N=110,INF=0x3f3f3f3f,MOD=1999997; 21 const LL LLNF=0x3f3f3f3f3f3f3f3fLL; 22 23 struct Edge{ 24 int u,v; 25 double r,s; 26 }e[N*N]; 27 28 double d[N]; 29 double v; 30 int first[N],next[N*N],inq[N],cou[N]; 31 int n,m,s,mt; 32 33 void adde(int a,int b,double r,double s) 34 { 35 e[mt].u=a,e[mt].v=b; 36 e[mt].r=r,e[mt].s=s; 37 next[mt]=first[a],first[a]=mt++; 38 } 39 40 int spfa() 41 { 42 int x,i; 43 double t; 44 queue<int> q; 45 mem(inq,0);mem(cou,0); 46 for(i=1;i<=n;i++)d[i]=-1; 47 d[s]=v; 48 cou[s]=1; 49 q.push(s); 50 while(!q.empty()) 51 { 52 x=q.front();q.pop(); 53 inq[x]=0; 54 for(i=first[x];i!=-1;i=next[i]){ 55 t=(d[x]-e[i].s)*e[i].r; 56 if(t>=0 && t>d[e[i].v]){ 57 d[e[i].v]=t; 58 if(!inq[e[i].v]){ 59 if(++cou[e[i].v]>=n)return 1; 60 inq[e[i].v]=1; 61 q.push(e[i].v); 62 } 63 } 64 } 65 } 66 return 0; 67 } 68 69 int main() 70 { 71 // freopen("in.txt","r",stdin); 72 int i,j,a,b; 73 double r1,s1,r2,s2; 74 while(~scanf("%d%d%d%lf",&n,&m,&s,&v)) 75 { 76 mt=0; 77 mem(first,-1); 78 for(i=0;i<m;i++){ 79 scanf("%d%d%lf%lf%lf%lf",&a,&b,&r1,&s1,&r2,&s2); 80 adde(a,b,r1,s1); 81 adde(b,a,r2,s2); 82 } 83 84 printf("%s\n",spfa()?"YES":"NO"); 85 } 86 return 0; 87 }