- pnpm命令
文章目录1.卸载指定包2.安装指定版本包3.清除pnpm的缓存4.其他相关操作5.版本选择语法6.工作空间示例(monorepo)7.注意事项在pnpm中管理包的特定版本安装和卸载操作如下:1.卸载指定包#卸载单个包pnpmremove#示例:卸载lodashpnpmremovelodash#卸载多个包pnpmremove#全局卸载pnpmremove--global2.安装指定版本包#精确安装特
- Cadence Design Systems EDA介绍(五)--Innovus
小蘑菇二号
笔记
目录Innovus的主要功能1.初始布局规划(Floorplanning)2.详细布局(Placement)3.布线(Routing)4.时序分析与优化(TimingAnalysisandOptimization)5.功耗分析与优化(PowerAnalysisandOptimization)6.面积优化(AreaOptimization)7.签核(Sign-off)Innovus的特点1.高性能2
- 基于均值偏移算法的动态目标跟踪研究
Zoiny_楠
算法均值算法目标跟踪
摘要:目标跟踪技术是计算机视觉领域中重要研究课题之一,在人类生活、军事侦察、工业生产、医疗诊断、交通管理等多方面,都有广泛的应用,研究目标跟踪对人类生活、工程应用等具有现实的指导意义。在基于视觉的目标跟踪算法中,经典的Mean-Shift算法以其理论科学有效、操作简单易实现,跟踪性能较好等优势,一直是众多学者研究的热点。可算法也存在着许多缺陷。例如目标模型中混有背景信息的干扰,给目标定位带来了偏差
- 15.OCR训练
Echo``
Halcon系统化学习ocr人工智能深度学习算法计算机视觉机器学习
目录1.OCR训练2.助手训练13.助手训练24.算子训练5.OCR训练联合编程6.练习1.OCR训练*OCR训练*1.分类器文件*.omc*2.halcon官方的*1.局限性只能识别数字和字母*2.样式比较单一*3.样本数量较少*...**3.训练方法*1.助手训练*1.打开OCR助手*2.选择图片*3.选择训练区域*4.分割*5.字体*6.训练文件*7.新*8.学习*9.加入训练样本*10.保
- 燕山大学软件用户界面设计考题
能运行就算成功
经验分享
2024年考题,考前完全不知道考什么,趁着现在还记得,造福下后辈。全部是简答。1.描述下实用性和它的三个维度2.写出五个功能可见性的例子3.关键性模型Keystroke-LevelModel(KLM)字母的意思4.undo四个设计原则(笔记和翻译根本没有,看到时已经懵了)5.GUI三种设计方式6.瀑布模型为什么不适合ui设计后面是大题,跟写实验报告差不多,这次是个预定家政服务的题,写信息点描述中心
- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- 规划将 IaaS 资源从经典部署模型迁移到 Azure Resource Manager
zangdalei
Market
尽管Azure资源管理器提供了许多精彩功能,但请务必计划迁移,以确保一切顺利进行。花时间进行规划可确保执行迁移活动时不会遇到问题。Note以下指导的主要参与者为Azure客户顾问团队,以及与客户合作迁移大型环境的云解决方案架构师。此文档随着出现新的成功模式而持续更新,因此,请不时地回来查看,了解是否有新的推荐内容。迁移之旅包括四个常规阶段:计划技术注意事项和权衡根据技术要求大小、地理区域和操作方案
- Python训练营打卡——DAY16(2025.5.5)
cosine2025
Python训练营打卡python开发语言机器学习
目录一、NumPy数组基础笔记1.理解数组的维度(Dimensions)2.NumPy数组与深度学习Tensor的关系3.一维数组(1DArray)4.二维数组(2DArray)5.数组的创建5.1数组的简单创建5.2数组的随机化创建5.3数组的遍历5.4数组的运算6.数组的索引6.1一维数组索引6.2二维数组索引6.3三维数组索引二、SHAP值的深入理解三、总结1.NumPy数组基础总结2.SH
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- 支持java8的kafka版本
兮动人
kafka分布式支持java8的kafka版本
文章目录1.Kafka支持Java8的版本范围2.官方建议与兼容性3.版本迁移建议4.关键时间点5.注意事项6.总结1.Kafka支持Java8的版本范围Kafka2.x和3.x版本:Kafka2.x和3.x版本(如2.8.0、3.0.0等)理论上支持Java8,但官方已逐步弃用对Java8的支持。Kafka3.0:官方在3.0版本中弃用Java8(但仍允许使用),并强烈建议升级到Java11或更
- JDBC工具类
小布不吃竹
数据库java
目录引言一、JDBC连接数据库步骤1.加载驱动2.获取连接(URL用户名密码)3.编写sql4.获取执行sql的stmt的对象5.执行sql拿到结果集6.遍历结果集7.关闭资源(先开的后关后开的先关)二、JDBC工具类版本一:基础JDBC工具类(JdbcUtils)版本二:配置化JDBC工具类(JdbcUtils2)版本三:连接池JDBC工具类(JdbcUtils3)测试总结引言JDBC(Java
- STM32和C++ 实现配置文件导入、导出功能
sam-zy
STM32stm32c++嵌入式硬件
一.配置文件导出功能//导出流程//1.客户端→设备:导出配置请求,例如:GetFlashData[d6fe30323454]:{ini},其中[]里面是设备序列号//2.设备→客户端:配置文件元数据(总大小、块数量)//3.设备→客户端:发送块1(包含块序号和大小)//4.设备→客户端:发送块n(包含块序号和大小)//5.设备→客户端:发送结束帧(包含crc校验值)//6.拼接块1-n的数据到缓
- 软件架构评估:关键方法与实战指南
你一身傲骨怎能输
架构设计架构
文章摘要架构评估是软件工程中确保系统满足业务目标和非功能需求的关键环节。常见方法包括:ATAM(架构权衡分析):围绕质量属性(性能、安全等)进行场景化评估,适合复杂系统清单检查法:标准化检查表快速评估架构各维度专家评审:多角色头脑风暴发现设计盲点量化评估:通过测试验证性能等可量化指标评估流程通常分为准备、评估、输出三阶段,需多角色参与,关注典型场景分析。评估报告应包含优缺点、风险和改进建议,并跟踪
- MySQL:索引失效场景及解决方案
目录一、前言二、索引失效场景及解决方案1.在索引列上使用函数或表达式2.使用类型隐式转换3.使用不等于或不包含操作符4.使用OR操作符连接不同的索引列5.使用LIKE操作符且以通配符开头6.对索引列进行运算7.查询条件中的字段顺序与复合索引的顺序不一致8.在WHERE子句中使用ISNULL或ISNOTNULL9.查询的数据占表中数据的比例较大10.索引字段的数据重复度过高11.使用不等值范围查询1
- Windows 下编译 AMGX
东北豆子哥
数值计算/数值优化HPC/MPICUDAHPC
文章目录Windows下编译AMGX**1.系统要求****2.安装必要工具****(1)安装VisualStudio****(2)安装CUDAToolkit****(3)安装CMake****3.获取AMGX源码****4.使用CMake生成VisualStudio项目****(1)配置CMake****(2)生成项目****5.使用VisualStudio编译****6.验证安装****7.常
- 2025高考北京及周边理工科大学信息
东北豆子哥
高考
文章目录清华大学**1.工程与技术类(全球顶尖)****2.自然科学类****3.生命科学与医学****4.社会科学与管理类****5.人文与艺术类****6.交叉学科与新兴领域****国内学科评估参考(教育部第四轮学科评估)****选择建议**北京航空航天大学**1.航空航天类(全国顶尖)****2.信息与工程类(国内领先)****3.基础科学与工程技术****4.新兴交叉学科****5.理科与
- vue3.0(十六)路由vue-router
程楠楠&M
vue3.0vue.js前端javascripthtml5vue-router
文章目录路由vue-router路由1.vue-router功能2.vue-router组成3.vue-router常用的函数vue-router使用1.安装2.vue3.0配置3.vue2.0配置4.基本用法5.编程式导航6.路由懒加载导航守卫路由的两种工作模式路由路由(routing)路由是指从源页面到目的页面时,决定端到端路径的决策过程。前端路由前端路由即由前端来维护一个路由规则。实现模式有
- Gitea 安装和配置
lionchan187
Web工具gitea代码托管
Gitea安装和配置:http://coffeelatte.cpolar.cn/post/software/applications/gitea/gitea_安装和配置/文章目录Gitea安装和配置:1.简介2.Gitea安装3.配置文件3.1.发送测试邮件4.创建/删除Gitea服务4.1.Windows服务4.2.Linux服务5.使用HTTPS服务6.使用内置SSH7.邮箱配置8.允许通过邮
- 【C/C++算法】二维后缀和
贾小孩
算法c++c语言
大家好,今天我们要实现的是二维后缀和,注意,是后缀和。我们先来理解一下前缀和以及二维前缀和都是啥。下面是一个一维的数组:12345比如说,求3的前缀和,就要把3之前的所有数(包括3)都加起来,也就是1+2+3=6.按照这个逻辑,我们求每个数的前缀和,就能得到新的前缀和数组:1361015二维前缀和的概念,这里有一个二维数组:123456789101112131415比如我们求8的二维前缀和,我们就
- 2025年渗透测试面试题总结-2025年HW(护网面试) 16(题目+回答)
独行soc
2025年护网面试职场和发展web安全安全linux渗透测试护网
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录2025年HW(护网面试)161.渗透测试步骤2.信息收集方法3.常用扫描器优缺点4.Burp破解MD5/Base64加密密码5.常见HTTP方法及区别6.常见状态码含义7.请求头作用8.响应头作用9.Cookie的Secure和HttpOnly属性10.渗透常用编码11
- 2025年渗透测试面试题总结-2025年HW(护网面试) 15(题目+回答)
独行soc
2025年护网面试职场和发展web安全安全linux渗透测试网络安全
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录2025年HW(护网面试)151.实习经历2.CNVD证书类型3.登录窗口渗透测试流程4.验证码绕过实战手法技术型绕过(自动化)逻辑型绕过(手动测试)5.WAF绕过能力说明6.职业发展规划7.技术成长周期8.漏洞复现与运营2025年HW(护网面试)151、有没有实习过?在
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- 对SPM12的认识(二)
对SPM12的认识(二)四、SegmentDataChannel体积(Volumes)偏差正则化(Biasregularisation)偏差的FWHM(BiasFWHM)保存偏差校正图像(SaveBiasCorrected)Tissues组织组织概率图(Tissueprobabilitymap)高斯数(Num.Gaussians)原始组织(NativeTissue)变形组织(WarpedTissu
- 员工列表查询-分页查询-PageHelper插件-注意事项
还是鼠鼠
springspringbootmybatisjava后端数据库
目录1.背景介绍2.Maven依赖(pom.xml)3.配置项(application.properties)4.核心代码示例4.1Controller层(Java)4.2Service层(Java)4.3Mapper接口(Java)4.4MapperXML(MyBatis)5.注意事项小结6.运行结果演示以下是一篇面向“JavaWeb使用PageHelper分页插件注意事项”简单介绍,包含完整可
- etcd:分布式系统的核心组件应用场景
Seal^_^
【云原生】容器化与编排技术持续集成#KubernetesetcdK8s云原生分布式服务发现负载均衡消息发布与订阅eureka
etcd:分布式系统的核心组件应用场景1.服务发现2.消息发布与订阅3.负载均衡4.分布式通知与协调5.分布式锁6.集群监控与Leader竞选TheBegin点点关注,收藏不迷路etcd,作为分布式系统中的重要基石,广泛应用于多个关键场景,为系统的稳定运行和高效通信提供了强有力的支持。1.服务发现核心功能:帮助集群中的服务相互发现和连接,简化服务间通信的复杂性。优势:通过统一的注册和查询接口,实现
- 图14CLIP 模型在 “分布偏移场景” 下的鲁棒性优化策略|学习笔记
学渣67656
笔记人工智能
一、先明确:左图的核心对比维度左图的横轴是“模型在标准分布上的准确率”,纵轴是“模型在分布偏移数据集上的准确率”,本质是对比“不同模型/策略在“标准性能”与“鲁棒性”之间的权衡,图中每条曲线代表一类模型/策略的“标准性能-鲁棒性”趋势,而红色箭头标注的“AdapttoImageNet”是一种“干预策略”,作用于CLIP模型后,使其性能点落在对应曲线上。二、左图中6条曲线的含义(按图例颜色+模型类型
- Python深入理解迭代器和生成器
TiYong
python学习笔记python正则表达式数据库开发语言算法vscode
当说起Python里面的高级特性时,就不能不提迭代器(Iterators)和生成器(Generators)啦!它们就像是处理数据的一把利器,特别是对付大数据的时候,简直就是神器!咱们今天就来聊聊它们到底是啥,怎么用,还有点啥实际用途吧!目录1.迭代器(Iterators)2.使用迭代器3.自定义迭代器4.生成器(Generators)5.生成器vs.列表推导式6.生成器的惰性计算(LazyEval
- Prompt工程深度解析:从指令模型到前沿模型的提示词设计演进
木鱼时刻
大模型prompt人工智能
深入探讨Prompt工程的核心原理,分析不同代际模型的能力差异,揭示企业级提示词模板化的价值与实践目录1.概述2.Prompt基础:核心要素与原则3.模型演进与Prompt策略差异4.企业级Prompt工程5.Prompt工程技术体系6.特殊任务实践技巧7.总结8.参考资料1.概述随着大语言模型(LLM)技术的飞速迭代,我们正处于一个关键的转折点。模型的演进不再是简单的参数增长,而是在核心能力上产
- 2025年检测相机十大品牌测评:工业级精度与场景化解决方案解析
lingling009
数码相机
一、引言在工业自动化与智能制造领域,检测相机作为质量管控的核心硬件,正以“高精度、高速度、高适应性”的特性重塑生产流程。这类设备通过光学成像与智能算法结合,实现对工件表面缺陷、尺寸偏差、装配精度的精准检测,效率较传统人工目检提升10-50倍。本文聚焦全球主流的10款检测相机,结合技术参数与实战场景,为汽车制造、新能源、3C电子等行业提供专业选型指南。二、国产领军品牌:迁移科技EpicEyePro系
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/