脑裂以及Redis主从同步中的坑

本文作为学习笔记,文章内容来自“极客时间”专栏《Redis核心技术与实战》,如有侵权,请告知,必即时删除。

1、脑裂

所谓的脑裂,就是指在主从集群中,同时有两个主节点,它们都能接收写请求。而脑裂最直接的影响,就是客户端不知道应该往哪个主节点写入数据,结果就是不同的客户端会往不同的主节点上写入数据。而且,严重的话,脑裂会进一步导致数据丢失。

1.1、脑裂产生原因

主库是由于某些原因无法处理请求,也没有响应哨兵的心跳,才被哨兵错误地判断为客观下线的。结果,在被判断下线之后,原主库又重新开始处理请求了,而此时,哨兵还没有完成主从切换,客户端仍然可以和原主库通信,客户端发送的写操作就会在原主库上写入数据了。下图展示了脑裂的发生过程。


脑裂以及Redis主从同步中的坑_第1张图片
28.jpg

1.2、解决方案

Redis 提供了两个配置项来限制主库的请求处理,分别是 min-slaves-to-write 和 min-slaves-max-lag。

  • min-slaves-to-write:这个配置项设置了主库能进行数据同步的最少从库数量;
  • min-slaves-max-lag:这个配置项设置了主从库间进行数据复制时,从库给主库发送 ACK 消息的最大延迟(以秒为单位)。

这两个配置项组合后的要求是,主库连接的从库中至少有 N 个从库,和主库进行数据复制时的 ACK 消息延迟不能超过 T 秒,否则,主库就不会再接收客户端的请求了

假设我们将 min-slaves-to-write 设置为 1,把 min-slaves-max-lag 设置为 12s,把哨兵的 down-after-milliseconds 设置为 10s,主库因为某些原因卡住了 15s,导致哨兵判断主库客观下线,开始进行主从切换。同时,因为原主库卡住了 15s,没有一个从库能和原主库在 12s 内进行数据复制,原主库也无法接收客户端请求了。这样一来,主从切换完成后,也只有新主库能接收请求,不会发生脑裂,也就不会发生数据丢失的问题了。

2、主从数据不一致

主从数据不一致,就是指客户端从从库中读取到的值和主库中的最新值并不一致。举个例子,假设主从库之前保存的用户年龄值是 19,但是主库接收到了修改命令,已经把这个数据更新为 20 了,但是,从库中的值仍然是 19。那么,如果客户端从从库中读取用户年龄值,就会读到旧值。

出现主从数据不一致的主要原因是主从库间的命令复制是异步进行的。从库会滞后执行数据同步命令的原因主要有两个

  1. 主从库间的网络可能会有传输延迟,所以从库不能及时地收到主库发送的命令,从库上执行同步命令的时间就会被延后。
  2. 即使从库及时收到了主库的命令,但是,可能会因为正在处理其它复杂度高的命令(例如集合操作命令)而阻塞。此时,从库需要处理完当前的命令,才能执行主库发送的命令操作,这就会造成主从数据不一致。

应对主从数据不一致的解决方案:

  1. 首先,在硬件环境配置方面,我们要尽量保证主从库间的网络连接状况良好。
  2. 我们还可以开发一个外部程序来监控主从库间的复制进度。

我们可以开发一个监控程序,先用 INFO replication 命令查到主、从库的进度,然后,我们用 master_repl_offset 减去 slave_repl_offset,这样就能得到从库和主库间的复制进度差值了。如果某个从库的进度差值大于我们预设的阈值,我们可以让客户端不再和这个从库连接进行数据读取,这样就可以减少读到不一致数据的情况。不过,为了避免出现客户端和所有从库都不能连接的情况,我们需要把复制进度差值的阈值设置得大一些。可以周期性地运行这个流程来监测主从库间的不一致情况。

脑裂以及Redis主从同步中的坑_第2张图片
29.jpg

监控程序可以一直监控着从库的复制进度,当从库的复制进度又赶上主库时,我们就允许客户端再次跟这些从库连接。

3、读取过期数据

Redis 同时使用了两种策略来删除过期的数据,分别是惰性删除策略和定期删除策略。关于删除策略可以参考:https://www.jianshu.com/p/183e310d182d

如果你使用的是 Redis 3.2 之前的版本,那么,从库在服务读请求时,并不会判断数据是否过期,而是会返回过期数据。在 3.2 版本后,Redis 做了改进,如果读取的数据已经过期了,从库虽然不会删除,但是会返回空值,这就避免了客户端读到过期数据。所以,在应用主从集群时,尽量使用 Redis 3.2 及以上版本。

设置数据过期时间的命令一共有 4 个,我们可以把它们分成两类:

  • EXPIRE 和 PEXPIRE:它们给数据设置的是从命令执行时开始计算的存活时间;
  • EXPIREAT 和 PEXPIREAT:它们会直接把数据的过期时间设置为具体的一个时间点。
脑裂以及Redis主从同步中的坑_第3张图片
30.jpg

当主从库全量同步时,如果主库接收到了一条 EXPIRE 命令,那么,主库会直接执行这条命令。这条命令会在全量同步完成后,发给从库执行。而从库在执行时,就会在当前时间的基础上加上数据的存活时间,这样一来,从库上数据的过期时间就会比主库上延后了。

假设当前时间是 2021 年 5 月 5 日晚上 9 点,主从库正在同步,主库收到了一条命令:EXPIRE testkey 60,这就表示,testkey 的过期时间就是 5 日晚上 9 点 1 分,主库直接执行了这条命令。

但是,主从库全量同步花费了 2 分钟才完成。等从库开始执行这条命令时,时间已经是 9 点 2 分了。而 EXPIRE 命令是把 testkey 的过期时间设置为当前时间的 60s 后,也就是 9 点 3 分。如果客户端在 9 点 2 分 30 秒时在从库上读取 testkey,仍然可以读到 testkey 的值。但是,testkey 实际上已经过期了。

为了避免这种情况,在业务应用中使用 EXPIREAT/PEXPIREAT 命令,把数据的过期时间设置为具体的时间点,避免读到过期数据。

你可能感兴趣的:(脑裂以及Redis主从同步中的坑)