用 Python 实现 3 种回归模型(Linear Regression,Lasso,Ridge)

公共的抽象基类

import numpy as np
from abc import ABCMeta, abstractmethod


class LinearModel(metaclass=ABCMeta):
    """
    Abstract base class of Linear Model.
    """

    def __init__(self):
        # Before fit or predict, please transform samples' mean to 0, var to 1.
        self.scaler = StandardScaler()

    @abstractmethod
    def fit(self, X, y):
        """fit func"""

    def predict(self, X):
        # before predict, you must run fit func.
        if not hasattr(self, 'coef_'):
            raise Exception('Please run `fit` before predict')

        X = self.scaler.transform(X)
        X = np.c_[np.ones(X.shape[0]), X]

        # `x @ y` == `np.dot(x, y)`
        return X @ self.coef_

Linear Regression

class LinearRegression(LinearModel):
    """
    Linear Regression.
    """

    def __init__(self):
        super().__init__()

    def fit(self, X, y):
        """
        :param X_: shape = (n_samples + 1, n_features)
        :param y: shape = (n_samples])
        :return: self
        """
        self.scaler.fit(X)
        X = self.scaler.transform(X)
        X = np.c_[np.ones(X.shape[0]), X]
        self.coef_ = np.linalg.inv(X.T @ X) @ X.T @ y
        return self

Lasso

class Lasso(LinearModel):
    """
    Lasso Regression, training by Coordinate Descent.
    cost = ||X @ coef_||^2 + alpha * ||coef_||_1
    """
    def __init__(self, alpha=1.0, n_iter=1000, e=0.1):
        self.alpha = alpha
        self.n_iter = n_iter
        self.e = e
        super().__init__()

    def fit(self, X, y):
        self.scaler.fit(X)
        X = self.scaler.transform(X)
        X = np.c_[np.ones(X.shape[0]), X]
        self.coef_ = np.zeros(X.shape[1])
        for _ in range(self.n_iter):
            z = np.sum(X * X, axis=0)
            tmp = np.zeros(X.shape[1])
            for k in range(X.shape[1]):
                wk = self.coef_[k]
                self.coef_[k] = 0
                p_k = X[:, k] @ (y - X @ self.coef_)
                if p_k < -self.alpha / 2:
                    w_k = (p_k + self.alpha / 2) / z[k]
                elif p_k > self.alpha / 2:
                    w_k = (p_k - self.alpha / 2) / z[k]
                else:
                    w_k = 0
                tmp[k] = w_k
                self.coef_[k] = wk
            if np.linalg.norm(self.coef_ - tmp) < self.e:
                break
            self.coef_ = tmp
        return self

Ridge

class Ridge(LinearModel):
    """
    Ridge Regression.
    """

    def __init__(self, alpha=1.0):
        self.alpha = alpha
        super().__init__()

    def fit(self, X, y):
        """
        :param X_: shape = (n_samples + 1, n_features)
        :param y: shape = (n_samples])
        :return: self
        """
        self.scaler.fit(X)
        X = self.scaler.transform(X)
        X = np.c_[np.ones(X.shape[0]), X]
        self.coef_ = np.linalg.inv(
            X.T @ X + self.alpha * np.eye(X.shape[1])) @ X.T @ y
        return self

测试代码

import matplotlib.pyplot as plt
import numpy as np

def gen_reg_data():
    X = np.arange(0, 45, 0.1)
    X = X + np.random.random(size=X.shape[0]) * 20
    y = 2 * X + np.random.random(size=X.shape[0]) * 20 + 10
    return X, y

def test_linear_regression():
    clf = LinearRegression()
    X, y = gen_reg_data()
    clf.fit(X, y)
    plt.plot(X, y, '.')
    X_axis = np.arange(-5, 75, 0.1)
    plt.plot(X_axis, clf.predict(X_axis))
    plt.title("Linear Regression")
    plt.show()

def test_lasso():
    clf = Lasso()
    X, y = gen_reg_data()
    clf.fit(X, y)
    plt.plot(X, y, '.')
    X_axis = np.arange(-5, 75, 0.1)
    plt.plot(X_axis, clf.predict(X_axis))
    plt.title("Lasso")
    plt.show()

def test_ridge():
    clf = Ridge()
    X, y = gen_reg_data()
    clf.fit(X, y)
    plt.plot(X, y, '.')
    X_axis = np.arange(-5, 75, 0.1)
    plt.plot(X_axis, clf.predict(X_axis))
    plt.title("Ridge")
    plt.show()

测试效果

Linear Regression
Lasso
Ridge

更多机器学习代码,请访问 https://github.com/WiseDoge/plume

你可能感兴趣的:(用 Python 实现 3 种回归模型(Linear Regression,Lasso,Ridge))