Flink + kafka + FlinkSql 计算 10秒滚动窗口内 用户点击次数,之后自定义 sink To mysql

Flink+kafka 流数据 使用FlinkSql 计算 10秒滚动窗口内 用户点击次数,之后自定义 sink To mysql。

Flink版本为1.6.1 

代码如下:

FlinkSqlWindowUserPv.java

import java.sql.Timestamp;

import java.util.Properties;

import org.apache.flink.api.common.functions.MapFunction;

import org.apache.flink.api.common.serialization.SimpleStringSchema;

import org.apache.flink.api.common.typeinfo.Types;

import org.apache.flink.api.java.tuple.Tuple3;

import org.apache.flink.api.java.tuple.Tuple5;

import org.apache.flink.streaming.api.datastream.DataStream;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;

import org.apache.flink.table.api.Table;

import org.apache.flink.table.api.TableConfig;

import org.apache.flink.table.api.java.StreamTableEnvironment;

import pojo.UserPvEntity;

public class FlinkSqlWindowUserPv{

    public static void main(String[] args) throws Exception {

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();


    env.setParallelism(8);


    TableConfig tc = new TableConfig();


    StreamTableEnvironment tableEnv = new StreamTableEnvironment(env, tc);

        Properties properties = new Properties();

        properties.put("bootstrap.servers", "127.0.0.1:9092");

        properties.put("zookeeper.connect", "127.0.0.1:2181");

        properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        properties.put("group.id", "test6");

        FlinkKafkaConsumer010 myConsumer = new FlinkKafkaConsumer010("myItems_topic5", new SimpleStringSchema(),

                properties);

        DataStream stream = env.addSource(myConsumer);


        DataStream> map = stream.map(new MapFunction>() {

        private static final long serialVersionUID = 1471936326697828381L;

@Override

public Tuple5 map(String value) throws Exception {

String[] split = value.split(" ");

return new Tuple5(split[0],split[1],split[2],split[3],Long.valueOf(split[4])*1000);

}

});


        map.print(); //打印流数据



        //注册为user表

        tableEnv.registerDataStream("Users", map, "userId,itemId,categoryId,behavior,timestampin,proctime.proctime");


        //执行sql查询    滚动窗口 10秒    计算10秒窗口内用户点击次数

        Table sqlQuery = tableEnv.sqlQuery("SELECT TUMBLE_END(proctime, INTERVAL '10' SECOND) as processtime,"

        + "userId,count(*) as pvcount "

        + "FROM Users "

        + "GROUP BY TUMBLE(proctime, INTERVAL '10' SECOND), userId");



        //Table 转化为 DataStream

        DataStream> appendStream = tableEnv.toAppendStream(sqlQuery,Types.TUPLE(Types.SQL_TIMESTAMP,Types.STRING,Types.LONG));


        appendStream.print();



        //sink to mysql

        appendStream.map(new MapFunction, UserPvEntity>() {

private static final long serialVersionUID = -4770965496944515917L;

@Override

public UserPvEntity map(Tuple3 value) throws Exception {

return new UserPvEntity(Long.valueOf(value.f0.toString()),value.f1,value.f2);

}

}).addSink(new SinkUserPvToMySQL2());


        env.execute("userPv from Kafka");

    }


}

 SinkUserPvToMySQL2.java

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import org.apache.flink.configuration.Configuration;

import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;

import pojo.UserPvEntity;

public class SinkUserPvToMySQL2 extends RichSinkFunction {

private static final long serialVersionUID = -4443175430371919407L;

PreparedStatement ps;

    private Connection connection;

    /**

    * open() 方法中建立连接,这样不用每次 invoke 的时候都要建立连接和释放连接

    *

    * @param parameters

    * @throws Exception

    */

    @Override

    public void open(Configuration parameters) throws Exception {

        super.open(parameters);

        connection = getConnection();

        String sql = "replace into t_user_pv(pvtime,userId, pvcount) values(?, ?, ?);";

        ps = this.connection.prepareStatement(sql);

    }

    @Override

    public void close() throws Exception {

        super.close();

        //关闭连接和释放资源

        if (connection != null) {

            connection.close();

        }

        if (ps != null) {

            ps.close();

        }

    }

    /**

    * 每条数据的插入都要调用一次 invoke() 方法

    *

    * @param value

    * @param context

    * @throws Exception

    */

    @Override

    public void invoke(UserPvEntity userPvEntity, Context context) throws Exception {

        //组装数据,执行插入操作

    ps.setLong(1, userPvEntity.getTime());

    ps.setString(2, userPvEntity.getUserId());

        ps.setLong(3, userPvEntity.getPvcount());


        ps.executeUpdate();

    }

    private static Connection getConnection() {

        Connection con = null;

        try {

            Class.forName("com.mysql.jdbc.Driver");

            con = DriverManager.getConnection("jdbc:mysql://localhost:3306/myTable??useUnicode=true&characterEncoding=UTF-8","root","123456");

        } catch (Exception e) {

            System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());

        }

        return con;

    }

}

结果展示:


Flink + kafka + FlinkSql 计算 10秒滚动窗口内 用户点击次数,之后自定义 sink To mysql_第1张图片


Flink + kafka + FlinkSql 计算 10秒滚动窗口内 用户点击次数,之后自定义 sink To mysql_第2张图片

---------------------

作者:麦香鸡翅

来源:CSDN

原文:https://blog.csdn.net/qq_20672231/article/details/84936716

版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(Flink + kafka + FlinkSql 计算 10秒滚动窗口内 用户点击次数,之后自定义 sink To mysql)