- matlab时域离散信号与系统,时域离散信号和系统的频域分析
远方有城
matlab时域离散信号与系统
信号与系统的分析方法有两种:时域分析方法和频域分析方法。在连续时间信号与系统中,信号一般用连续变量时间t的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z变换和序列傅立叶变换法。Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散
- 2-88 基于matlab的四叉树加权聚焦多聚焦图像融合
'Matlab学习与应用
matlab工程应用matlab人工智能计算机视觉全聚焦图像加权焦点测量方法四叉树加权聚焦多聚焦图像融合
基于matlab的四叉树加权聚焦多聚焦图像融合,的四叉树分解策略将源图像被分解成四叉树结构中具有最佳尺寸的块。在这个树形结构中,使用一种新的加权焦点测量方法(名为加权修正拉普拉斯之和)来检测焦点区域。可以很好地从源图像中提取出来,并重建生成一幅全聚焦图像。由于采用了四叉树分解策略和新的加权焦点测量法,因此所提出的算法简单而有效。程序已调通,可直接运行。2-88加权焦点测量方法-小红书(xiaoho
- OpenCV图像处理技术之图像金字塔
WYOLO
opencv
FuXianjun.AllRightsReserved.所有素材来自于小傅老师。开始今天的学习吧!学习的是图像金字塔。我们的学习目标:能够理解高斯金字塔与拉普拉斯金字塔的处理过程能够使用相关函数进行高斯金字塔可逆性分析能够使用相关函数进行拉普拉斯金字塔无损恢复图像能够掌握ROI的应用处理能够掌握泛洪填充算法并使用相关函数进行处理冲冲冲!任务一:高斯金字塔高斯金字塔由cv2.pyrDown()与cv
- 图像处理 -- 图像清晰度测量方法
sz66cm
图像处理计算机视觉
图像清晰度测量方法拉普拉斯算子(LaplacianOperator)拉普拉斯算子是一种二阶导数算子,用于检测图像的边缘。清晰的图像通常具有更多且更明显的边缘。边缘检测(EdgeDetection)常用的边缘检测算法包括Sobel、Prewitt和Canny边缘检测器。通过计算边缘的数量和强度,可以间接判断图像的清晰度。方差(Variance)方差用于衡量图像灰度值的分布情况。图像中灰度值的方差越大
- Open3D mesh 拉普拉斯laplacian滤波
白葵新
3d算法python计算机视觉人工智能
目录一、概述1.1原理1.2实现步骤1.3应用场景二、代码实现2.1关键函数参数详解返回值2.2完整代码三、实现效果3.1加入噪点的mesh3.2迭代10次3.3迭代100次Open3D点云算法汇总及实战案例汇总的目录地址:Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客一、概述拉普拉斯滤波(LaplacianSmoothing)是一种常用的网格平滑技术,通过对网格顶点的位置进
- 读一读《拉普拉斯的魔女》
墨中缘
所以我说你根本没搞懂,堂堂的甘粕才生,怎么可以在这个世界上留下失败作品呢?无论如何都必须完成完美的作品。既然无法指望活在世上的你们能够符合我完美的要求,那就让你们消失,重新修正过去的记录。既然你看过那个博客,你应该也知道,在博客文章中,你们是我出色的家人,就连脑袋不灵光的萌绘,也变成了聪明乖巧的女儿,不久之后,将会以纪实小说的方式出版,而且日后还要拍成电影,当然由我执导,那时候,甘粕才生的家庭才最
- 大数定律与中心极限定理
莫听穿林打叶生
概率论数理统计切比雪夫不等式人工智能数学基础
大数定律与中心极限定理大数定律切比雪夫不等式依概率收敛切比雪夫大数定律辛钦大数定律伯努利大数定律中心极限定理列维-林德伯格中心极限定理(Lindeberg-Levycentrallimittheorem)棣莫弗-拉普拉斯中心极限定理(DeMoivre-Laplacecentrallimittheorem)李雅普诺夫中心极限定理(Lyapunov’scentrallimittheorem)大数定律描
- 基于图特征混合学习的功能网络组织动力学
茗创科技
文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。导读在系统水平上理解人脑活动的组织原则仍然是网络神经科学的主要挑战之一。在这里,作者介绍了一种基于图学习的完全数据驱动的方法,以从区域平均时间轴中提取有意义的重复网络模式。作者使用了图拉普拉斯混合模型(GLMM),这是一个生成模型,将功能数据视为在多个基础图形上表达的信号集合。通过利用脑区活动之间的协方差,可以在不利用结构信息的情况下进行
- 图像预处理技术与算法
木子n1
算法嵌入式开发算法数码相机计算机视觉
图像预处理是计算机视觉和图像处理中非常关键的第一步,其目的是为了提高后续算法对原始图像的识别、分析和理解能力。以下是一些主要的图像预处理技术:1.图像增强:对比度调整:通过直方图均衡化(HistogramEqualization)等方法改善图像整体或局部的对比度。伽玛校正:改变图像的亮度特性,用于补偿显示器或其他硬件设备的非线性响应。锐化处理:如使用高通滤波器(如拉普拉斯算子、Sobel边缘检测算
- 【自控原理】如何求复频域表达式X(s)的Z变换
啵啵啵啵哲
控制理论数学自动化学习
应用部分分式法求取以拉普拉斯变换的象函数X(s)X(s)X(s)形式给出的函数x(t)x(t)x(t)的Z变换是很方便的,即将已知的X(s)X(s)X(s)展开成部分分式,然后求取每一部分分式项的Z变换,并将它们组合在一起.【例】求X(s)=1−e−ss2(s+1)X(s)=\frac{1-\mathrm{e}^{-s}}{s^2(s+1)}X(s)=s2(s+1)1−e−s的Z变换.【解答】将给
- OpenCV-38 图像金字塔
一道秘制的小菜
OpenCVopencv计算机视觉图像处理人工智能pythonnumpy
目录一、图像金字塔1.高斯金字塔2.拉普拉斯金字塔一、图像金字塔图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。简单来说,图像金字塔是同一图像不同分辨率的子图集合。图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止
- 【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】07Localfeature-Blobdetection1实现尺度不变性不管多近多远,多大多小都能检测出来找到一个函数,实现尺度的选择特性2高斯偏导模版求边缘做卷积3高斯二阶导=拉普拉斯看哪个信号能产生最大响应高斯二阶模版检测尺度(用二阶过零点检测边缘)高斯二阶导有两个参数:方差和窗宽最后图表示当信号与高斯滤波核能匹配的时候,能产生一个极大值准备一堆模版上去卷积,
- 基于拉普拉斯金字塔的高分辨率眼底图像视网膜血管实时分割matlab仿真
fpga和matlab
MATLAB板块2:图像-特征提取处理拉普拉斯金字塔高分辨率眼底图像视网膜血管实时分割matlab
目录1.拉普拉斯金字塔原理2.基于拉普拉斯金字塔的血管分割方法3.MATLAB程序3.实验结果与分析视网膜血管分割是眼底图像分析中的关键步骤,对于诊断视网膜病变等眼部疾病具有重要意义。本文提出了一种基于拉普拉斯金字塔的高分辨率眼底图像视网膜血管实时分割方法。该方法首先利用拉普拉斯金字塔对眼底图像进行多尺度分解,然后在不同尺度上提取血管特征,并通过融合多尺度信息实现血管的精确分割。眼底图像是诊断眼部
- 00005. 在朴素Bayes模型中,为什么需要Laplace平滑?
deBroglie
统计学上,在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。然而只因为在以前的有限的训练数据集中没见到过一件事,就估计这个事件的概率为零,这明显是不合理的。为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑。假定训练样本很大时,每个分量的计数加造成的估计概率变化可以忽略不计,但可以
- 图像金字塔
猴子喜
1.基本概念一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。2.高斯金字塔和拉普拉斯金字塔高斯金字塔用来向下降采样图像拉普拉斯金字塔则用来从金字塔底层图像中向上采样重建一个图像。
- 科学为我们打开了一扇新的大门,意识可以影响现实世界?
风中叶飘
意识是被现代科学排斥在外的一种事物。现代科学尤其是现代物理学,建立在一个基础之上,即我们的意识之外存在着一个客观真实的外部世界,意识仅仅是对客观世界的反映,而不可能影响客观世界。在这个基础上,我们创建了辉煌的科学理论大厦。“我的科学体系中不需要上帝的存在。”拉普拉斯的名言仍在我们的耳边回荡,验证了科学那辉煌的一刻。然而,宇宙却似乎要跟人类开一个大大的玩笑。人类秉持着科学态度一路走来,在探索宇宙更深
- 图像聚类
顽皮的石头7788121
(1)利用主成分分析后选取主成分利用k-means算法进行聚类(2)提取图像的灰度直方图,利用直方图作为特征向量聚类。(有些类似层次聚类,通过小区间合并依次聚类)(3)像素聚类,使用滑窗方式求取局部均值,利用相关均值矩阵进行聚类。(4)谱聚类:首先计算n个图像数据的相似性矩阵,矩阵中每个元素表示两个元素之间的相似度。通过相似度矩阵构建谱矩阵(具体通过拉普拉斯矩阵实现),对普矩阵进行特征分解得到特征
- 读《拉普拉斯的魔女》有感
看那年花开花落
电影制作人水城义郎带着年轻貌美的妻子千佐都,去赤熊温泉度假村游玩,不幸硫化氢中毒身亡,大学教授青江受警察委托调查此案。青江教授通过勘测,认为硫化氢只有达到一定的浓度,才能置人于死地,可是案发现场在户外,也就是说很难达到那么高的浓度,所以最好的解释,只能是意外。另外,青江在旅馆发现了一个很奇怪的女孩,一般遇到发生事故的地方,常人都是避之唯恐不及,而那个女孩却特意赶来入住旅馆,他不得不对这个女孩留了个
- 期货交易之命门—资金管理
恒指早参
期货交易之命门—资金管理一、为何资金管理?因为在交易市场唯一具有确定性的就是资金管理。和交易具有因果联系的也只有资金管理。资金管理是符合于我们人类赖以认知大千世界各种事物的决定论——拉普拉斯信条。资金管理是风险控制最为核心的环节。资金管理是指资金的配置问题,其中包括投资组合的设计,整体帐户风险承受度、每笔交易初始风险承受度、如何设定交易规模、如何进行仓位调整、帐户的整体增长期望值、在顺境或挫折阶段
- 图像做拉普拉斯变换Matlab,MATLAB 图像拉普拉斯变换
weixin_39566914
图像做拉普拉斯变换Matlab
A=imread('1.jpg');B=imread('2.jpg');C=imread('3.jpg');D=imread('4.jpg');F1=imread('5.jpg');A_a=double(A)/255;B_b=double(B)/255;C_c=double(A)/255;D_d=double(B)/255;ori_A=A;ori_B=B;ori_C=C;ori_D=D;[p1,q
- 数字图像处理中的拉普拉斯变换
小鱼tuning
算法图像处理
拉普拉斯变换是数字图像处理中的一种技术,其原理是基于拉普拉斯算子,用于检测图像中的边缘和突出细节。具体原理如下:1.拉普拉斯算子:拉普拉斯算子是一种数学算子,用于计算图像的二阶导数。在数字图像处理中,拉普拉斯算子用于离散化图像,并通过有限差分来近似计算二阶导数。2.离散拉普拉斯算子:在数字图像处理中,图像被离散成像素网格。拉普拉斯算子通过以下3x3的离散核(模板)来近似计算二阶导数:0101-41
- 图像的拉普拉斯变换实现
SimpleLearing
opencv人工智能计算机视觉
拉普拉斯变换1.简介拉普拉斯变换是一种用于增强图像中的高频细节的图像处理操作。它对图像进行二阶微分,强调了图像中的边缘和细节信息。在拉普拉斯变换后的图像中,边缘通常会显得更加清晰,从而有助于图像分析和特征提取。2.原理拉普拉斯变换的原理是通过对图像进行二阶微分来突出图像中的高频细节。它可以使用卷积操作来实现,通常使用拉普拉斯核(3x3矩阵)进行卷积。具体而言,对于灰度图像,拉普拉斯变换的表达式为:
- 故事总有个开头吧!即使它不精彩。
龙哈和螃嗨
刚从微博来,不是被广告吸引,是看到自己两年前大学时期的即时创作,惊叹当时自己的文笔跟如今相比竟略胜一筹。但当时没有想要持续创作的想法,一来是未将写作划入未来的学业计划,二来是觉得靠写作赚钱仿佛很遥远。当然现在也没觉得创作挣钱就很容易,要坚持更要努力。随后我对课外书籍的阅读量几乎为零,因为每天盘旋在拉普拉斯,傅立叶变换中。更要与精神压力作斗争,如有看小说的闲暇时光,就说明自己开始偷懒,于是觉得这是种
- [C#][opencvsharp]winform实现自定义卷积核锐化和USM锐化
FL1623863129
C#计算机视觉人工智能
【锐化介绍】图像锐化(imagesharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。一、为什么要用USM锐化?上一篇讲拉普拉斯锐化,不能提供精细的调整,在photoshop中采用USM(Unsha
- OpenCV 12 - 图像金字塔和DOG概念
江凡心
opencv人工智能计算机视觉
1图像金字塔概念1.我们在图像处理中常常会调整图像大小,最常见的就是放大(zoomin)和缩小(zoomout),尽管凡何变换也可以实现图像放大和缩小2.一个图像金字塔式一系列的图像组成,最底下一张是图像尺寸最大,最上方的图像尺寸最小,从空间上从上向下看就像一个古代的金字塔3层级越高,则图像越小,分辨率越低。高斯金字塔(Gaussianpyramid)——用来向下采样,主要的图像金字塔。拉普拉斯金
- 拉普拉斯边缘检测_边缘检测 Laplace算子
燕霏
拉普拉斯边缘检测
Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作。拉普拉斯算子(LaplaceOperator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。拉普拉斯算子也可以推广为定义在黎曼流形上的椭圆型算子,称为拉普拉斯-贝尔特拉米算子。(百度百科)拉普拉斯算子是最简单的各项同性二阶微分算子,具有旋转不变性。根据函数微
- 使用OpenCV进行模糊检测(拉普拉斯算子)
周旋机器视觉
Opencv库python计算机视觉
使用OpenCV进行模糊检测(拉普拉斯算子)本文首发于公众号【Opencv视觉实践】,翻译自光头哥哥的博客:【BlurdetectionwithOpenCV】。本文仅作学习分享,原文链接:https://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/这只超可爱、超活跃家养小猎犬可能是有史以来拍照次数最多的狗。从8周大我们得到
- OpenCV——Laplacian 算子
XL是人间理想
OpenCVopencv计算机视觉python
Laplacian算子Laplacian(拉普拉斯)算子是一种二阶导数算子,其具有旋转不变性,可以满足不同方向的图像边缘锐化(边缘检测)的要求。通常情况下,其算子的系数之和需要为零。例如,一个3×3大小的Laplacian算子如图所示。Laplacian算子类似二阶Sobel导数,需要计算两个方向的梯度值。例如,在图9-25中:左图是Laplacian算子。右图是一个简单图像,其中有9个像素点
- OpenCV—拉普拉斯算子(Laplacian)边缘检测:原理与实现
AI_dataloads
opencv人工智能计算机视觉
目录介绍拉普拉斯算子的作用拉普拉斯算子的原理使用OpenCV实现拉普拉斯算子完整代码展示结论介绍拉普拉斯算子是一种常用于图像处理的边缘检测技术,它有助于识别图像中的边缘和纹理特征。本文将深入探讨拉普拉斯算子的原理,以及如何使用OpenCV实现它。拉普拉斯算子的作用拉普拉斯算子可以用来检测图像中的边缘。在图像中,像素值的变化通常是不均匀的,而在边缘处,像素值的变化通常是最大的。因此,如果我们将拉普拉
- opencv学习 特征提取
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》图像金字塔略拉普拉斯金字塔对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。详情可查看https://zhuanlan.zhihu.com/p/80362140图像金字塔融合拉普拉斯金字塔通过源图像减去先缩小再放大的图像构成,保留
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理