- DeepSeek带来服务器与显卡需求激增的核心逻辑
DeepSeek+NAS
人工智能服务器运维网络安全计算机网络
随着DeepSeek等开源AI模型的普及,个人开发者和小型企业正加速构建私有化AI服务器,以处理敏感数据和定制化任务。这种趋势不仅重构了算力需求的结构,更推动服务器和显卡市场进入新一轮增长周期。以下从技术迭代、行业需求、市场格局三个维度展开论述。一、私有化部署:从数据安全到算力自主的核心驱动力数据隐私与合规性需求公共AI平台的数据泄露风险促使企业选择本地化部署。例如,医疗机构的患者数据、金融企业的
- Hugging Face预训练GPT微调ChatGPT(微调入门!新手友好!)
y江江江江
机器学习大模型gptchatgpt
HuggingFace预训练GPT微调ChatGPT(微调入门!新手友好!)在实战中,⼤多数情况下都不需要从0开始训练模型,⽽是使⽤“⼤⼚”或者其他研究者开源的已经训练好的⼤模型。在各种⼤模型开源库中,最具代表性的就是HuggingFace。HuggingFace是⼀家专注于NLP领域的AI公司,开发了⼀个名为Transformers的开源库,该开源库拥有许多预训练后的深度学习模型,如BERT、G
- cherry-studio - 多模型支持的跨平台 AI 桌面助手
小众AI
AI开源人工智能AI编程
GitHub:https://github.com/CherryHQ/cherry-studio更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI一款支持多种大语言模型服务的跨平台桌面客户端,兼容Windows、Linux和macOS系统。它支持主流云端模型(如OpenAI、Anthropic等)以及本地模型(如Ollama、LMStudio),能够满足文本生成、
- Open-Sora - 为所有人实现高效的视频制作大众化
小众AI
AI开源音视频人工智能AI编程
GitHub:https://github.com/hpcaitech/Open-Sora更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI这是一款开源的SOTA(State-of-the-Art)视频生成模型,仅用20万美元(224张GPU)就能训练出商业级11B参数的视频生成大模型。它采用Python语言和PyTorch深度学习框架开发,具有生成速度快、资源消
- OWL - 优化劳动力学习的通用智能体
小众AI
AI开源学习人工智能AI编程
GitHub:https://github.com/camel-ai/owl更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AIOWL是一个前沿的多智能体协作框架,推动任务自动化的边界,构建在CAMEL-AIFramework。愿景是彻底变革AI智能体协作解决现实任务的方式。通过利用动态智能体交互,OWL实现了跨多领域更自然、高效且稳健的任务自动化。OWL在GAIA
- ACI EP Learning Whitepaper 1. ACI EP组件
m0_54931486
思科ACI网络思科ACIEndpointACIfabricNexusEP学习
1.ACIEndpointACI网络架构的Endpoint表整合了传统MAC地址表和ARP表的功能。其核心机制是通过硬件层直接学习数据包的源MAC地址与IP地址映射关系,摒弃了传统ARP协议依赖广播请求获取下一跳MAC地址的模式。这种设计优化体现在两方面:1)减少控制面ARP流量处理带来的资源消耗;2)基于终端实际流量即可实时感知主机IP/MAC地址的拓扑迁移,无需依赖GARP通告即可实现终端移动
- 什么是MCP?看不懂你打我
X.Cristiano
深度学习MCP
什么是MCP?MCP是一种协议,它实现了大模型资源调用的标准化。千百年来,随着人类社会的发展,标准化的进程不断推进。大模型与外部资源的对接同样需要标准化,MCP正是为此而生!接下来的文字,或许,将帮助你奶奶明白MCP对于她意味着什么。2011年,微信发布。想象一下,你奶奶刚开始用微信。那时,还没有小程序。她的体验或许是这样的:第一个月,她惊喜地发现微信能订电影票了!再过一个月,她发现微信又能约出租
- 8、Python 字符串处理与正则表达式实战指南
wolf犭良
pythonpython正则表达式
Python字符串处理与正则表达式实战指南文章概述本文深入探讨Python字符串处理核心方法与正则表达式实战技巧,涵盖字符串编码转换、分割替换、正则表达式语法精髓,并通过日志解析、数据清洗等真实场景案例展示高阶应用。最后提供10道阶梯式练习题(附完整答案代码),助你从基础到进阶全面掌握文本处理技能。一、字符串处理核心三剑客1.1编码转换(encode/decode)text="中文文本"utf8_
- 无人机喊话系统:空中扩音器的科技密码!
云卓SKYDROID
无人机科技人工智能云卓科技科普高科技
一、技术核心:空中声波系统的三重架构1.声源处理中枢支持双模输入:麦克风实时采集与数字音频导入搭载DSP数字信号处理器,实现动态降噪(信噪比>70dB)自适应EQ调节,针对不同场景优化频响曲线(如灾害现场增强低频穿透力)2.定向声场发生器采用相控阵扬声器技术,波束角可调范围15°-60°声压级最高达125dB(相当于喷气式飞机起飞噪音)有效投射距离300米(静风环境下)3.飞控集成平台专用减震支架
- CAN协议简介:从基础到高级应用
New_Teen
嵌入式硬件学习笔记嵌入式硬件物联网
文章目录引言一、CAN协议概述1.1基本特性1.2典型应用场景二、物理层解析2.1信号规范2.2网络拓扑三、数据链路层机制3.1帧类型对比3.2非破坏性仲裁3.3错误处理机制四、帧结构详解4.1标准数据帧结构4.2扩展帧结构五、高级特性5.1CANFD协议增强5.2报文过滤机制六、同步与定时6.1位时间组成6.2同步规则七、开发实践要点结语引言在现代工业控制和汽车电子领域,CAN(Controll
- 【AI大模型应用开发】RAG-Fusion框架:忘掉 RAG,未来是 RAG-Fusion
同学小张
大模型人工智能笔记chatgptagiembeddingRAGprompt
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习C++进阶、OpenGL、WebGL知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。RAG目前很火,但是也有一些不足的地方。有不足就有改进方法。本文我们来看一个方法:RAG-Fusion,理解其原理,并看一下其实现源码。文章目录0.RAG的不足1.RAG-Fusion原理概述2.步骤拆解与代码示例2.1
- Webpack4从入门到精通以及和webpack5对比_webpack现在用的是哪个版本
2501_90253044
webpack前端node.js
'css-loader',//less-loader:将less文件编译成css文件,需要下载less-loader和less'less-loader'],},{test:/\.css$/,//使用多个loader用use,使用一个loader用loaderuse:['style-loader','css-loader'],},{//url-loader:处理图片资源,问题:默认处理不了html中
- 网络编程--服务器双客户端聊天
疾跑哥布林升级版
java算法开发语言
写一个服务器和客户端运行服务器和2个客户端,实现聊天功能客户端1和客户端2进行聊天,客户端1将聊天数据发送给服务器,服务器将聊天数据转发给客户端2要求:服务器使用select模型实现,客户端1使用poll模型实现,客户端2使用多线程实现服务器:#include//将client存入数组arr中的最后一个位置上,存完之后,arr数组的长度记得自增voidinsert_client(intarr[],
- rag-给一篇几百页的pdf,如何从中找到关键信息并汇总出关系图
蒸土豆的技术细节
人工智能
小思考对pdf肯定要做模糊chunk,能用模型切分就用模型切分,不能用模型就用规则,规则要尽可能保存连续文本,特殊数据格式(图、表格)必须完整保存,必须能被捕捉到。这些独立的表格or图数据,也要单独做embedding,以其中的title和行列title信息作embedding材料。也不能忘了传统搜索方法,基于搜索的、基于传统词频的、基于关键字的。。。假设已经找到了信息所在的目标,如果它是个表格,
- AI赋能视频创作:蓝耘MaaS与海螺AI技术的深度融合
云边有个稻草人
热门文章人工智能音视频图片生成视频蓝耘智算蓝耘MaaS平台体验海螺AI高效视频渲染和优化
云边有个稻草人-CSDN博客目录一、蓝耘MaaS平台概述(1)平台的模块化设计(2)蓝耘MaaS的灵活性与扩展性(3)蓝耘MaaS的安全性与隐私保护二、海螺AI视频模型简介(1)海螺AI的核心技术(2)海螺AI的视频生成流程(3)海螺AI的应用场景三、在蓝耘Maas平台如何使用海螺AI生成视频(1)注册蓝耘平台账号(2)点击MaaS平台(3)点击视觉模型并选择l2V-01视频模型(4)体验图片生成
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- Hive 实际应用场景及对应SQL示例
小技工丨
大数据随笔hivesqlhadoop大数据数据仓库
Hive实际应用场景及对应SQL示例一、日志分析场景**场景说明:**处理大规模日志数据(如Web访问日志),分析用户行为或系统运行状态。SQL示例:--统计每日UV(用户访问量)SELECTdate,COUNT(DISTINCTuser_id)ASdaily_uvFROMweb_logsWHEREevent_type='page_view'GROUPBYdate;技术要点:使用DIST
- 风控算法(一)——数据测试
月亮月亮要去太阳
机器学习人工智能
下面的内容都是针对数据源测试的一些可能得问题:1、请描述你在开发和执行数据测试流程时的具体步骤。确定样本(对齐样本与时间,去除假样本)——确定特征(确认目前特征)——数据信息(返回的数据字典、收费方式、底层数据:特征、分数)——数据清洗(缺失值替换)——数据训练形成报告。2、如何确定数据产品在风险模型中的潜在价值和适用性的?AUC、IV、相关性、性价比、数据产品背景和领域3、请详细描述你负责的10
- 智见未来:多大模型协同的数据分析新范式
一ge科研小菜菜
人工智能大数据人工智能大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着大语言模型(LLM)的快速发展,ChatGPT、DeepSeek、Grok等AI模型在数据分析和洞察生成方面展现出巨大潜力。利用多个LLM的协同能力,可以增强数据分析的多角度解读、减少单一模型的偏差,并优化洞察生成的深度和精准度。本文探讨如何结合多个LLM,在数据分析领域实现更可靠的洞察生成,并提供具体的策略、方法和应用场景。2.主要
- 并发爬虫实战:多线程高效抓取王者荣耀全英雄皮肤
YiFoEr_Liu
爬虫案例实操爬虫部署python爬虫python大数据
一、场景与挑战在网络爬虫开发中,我们常常面临以下挑战:需要处理成百上千个页面的数据抓取目标服务器存在反爬机制和请求频率限制单线程模式下载效率低下,难以充分利用带宽本文以王者荣耀英雄皮肤下载为例(日访问量超过1亿的热门游戏),演示如何通过Python并发编程实现高效数据抓取。二、技术选型分析2.1为什么选择并发线程?I/O密集型场景:网络请求占比90%以上GIL限制:Python线程适合I/O密集型
- 如何评估大语言模型生成文本的质量?
gs80140
AI语言模型人工智能自然语言处理
目录如何评估大语言模型生成文本的质量?1.评估指标概览自动评估指标(AutomaticMetrics)人工评估方法(HumanEvaluation)2.自动评估方法示例(1)计算BLEU分数(2)计算ROUGE分数(3)计算BERTScore(4)使用GPT-4进行评分3.人工评估方法(1)流畅性(Fluency)检查(2)连贯性(Coherence)检查(3)事实准确性(FactualAccur
- 无矩阵乘法LLM:效率与性能双突破
XianxinMao
人工智能矩阵人工智能线性代数
标题:无矩阵乘法LLM:效率与性能双突破文章信息摘要:无矩阵乘法的LLMs通过创新技术替代传统矩阵乘法操作,显著降低了计算成本,减少了对GPU的依赖。这种模型在内存使用和延迟方面表现优异,尤其在大规模模型上效率显著提升。例如,13B参数的模型仅需4.19GBGPU内存,延迟低至695.48ms,远优于传统模型。此外,基于FPGA的硬件优化进一步提升了性能,1.3B参数模型功耗仅为13W,达到人类阅
- Adam-mini:深度学习内存效率新突破
XianxinMao
人工智能深度学习人工智能
标题:Adam-mini:深度学习内存效率新突破文章信息摘要:Adam-mini优化器在深度学习领域展现出突破性潜力,尤其在内存效率和计算性能上表现卓越。相比AdamW,Adam-mini将内存效率提升了一倍,并通过减少学习率数量显著降低了内存消耗,同时保持了与AdamW相当甚至更好的性能。在训练十亿参数级别的大语言模型(LLM)时,Adam-mini实现了49.6%的吞吐量提升,并减少了33%的
- 【机器学习】模型拟合
CH3_CH2_CHO
什么?!是机器学习!!机器学习人工智能欠拟合过拟合
1、欠拟合1.1现象欠拟合是机器学习和统计建模中的一种常见问题,表现为模型无法充分捕捉数据中的潜在规律和模式。无论是训练数据还是测试数据,模型的预测误差都居高不下。在实际应用中,欠拟合的模型往往显得过于简单和粗糙,无法对数据进行有效的拟合和描述。1.2原因模型过于简单是导致欠拟合的主要原因:例如,使用直线去拟合具有明显曲线趋势的数据,或者使用低阶多项式去拟合高阶的复杂函数关系。这种情况下,模型的表
- GOT-OCR2.0:突破性端到端架构与高精度文本识别的技术创新
XianxinMao
人工智能深度学习
GOT-OCR2.0在技术上的突破与优势GOT-OCR2.0在技术上实现了对传统OCR系统的显著超越,主要体现在其采用了统一的端到端(End-to-End)架构。这一架构的创新性设计带来了多方面的提升,具体包括以下几个关键方面:1.统一的端到端架构传统OCR系统的局限:传统的OCR流程通常由多个独立的模块组成,如图像预处理、字符分割、特征提取、分类识别等。这种多步处理方式不仅增加了系统的复杂性,还
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- 深入理解正则表达式:语法全解析
谢兴豪
本文还有配套的精品资源,点击获取简介:正则表达式是一种用于文本匹配的模式,广泛应用在文本处理、数据验证等领域。本文将全面探讨正则表达式的语法细节,包括字符匹配、元字符、字符类、量词、分组与反向引用、选择与否定、位置锚点、预定义字符集、模式修饰符、回溯控制以及正向先行断言和正向后行断言。掌握这些知识有助于提高编程效率和代码质量。1.正则表达式简介正则表达式是IT行业中的“瑞士军刀”,它们在文本处理、
- springmvc中如何自定义入参注解并自动注入值
红豆和绿豆
Springmvc
在Spring中,`HandlerMethodArgumentResolver`是一个非常强大的接口,用于自定义控制器方法参数的解析逻辑。以下是一个完整的示例,展示如何使用`HandlerMethodArgumentResolver`并结合自定义注解来实现特定的参数解析逻辑。###**1.定义自定义注解**首先,定义一个自定义注解,用于标记需要特殊处理的参数。例如,定义一个`@CurrentUse
- 使用提示词进行信息抽取的实用方法
scaFHIO
windowspython
在大规模语言模型(LLM)中进行信息抽取时,我们不一定需要工具调用功能。通过精心设计的提示词(prompt)可以指导模型输出特定格式的信息,然后对其进行解析以生成结构化数据。这种方法依赖于创建良好的提示词,并将LLM的输出解析为所需的Python对象。技术背景介绍大规模语言模型可以根据提示词生成特定格式的文本。例如,我们可以要求模型以JSON格式输出所需的信息。在信息抽取的场景中,设计良好的提示词
- 服务器相关的硬件知识
猿小喵
运维服务器数据库
网卡:网卡是计算机网络中用于实现计算机之间通信的硬件设备。它工作在OSI模型的第二层(链路层),通过电缆或无线信号与网络设备(如交换机、路由器)连接,带有芯片,可插拔。网卡的接口分为电口(如RJ45接口,用于连接网线)和光口(用于连接光模块和光纤)。根据传输协议,网卡可分为以太网卡、FC(FibreChannel)网卡和iSCSI网卡。以太网卡是最常见的类型,用于普通网络通信;FC网卡主要用于存储
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name