【Android】加密算法相关知识点

主要用在明文传输敏感数据如密码等,存储本地的敏感数据利用加密解密来存取。
Java的加密算法主要分为:对称加密、非对称加密、摘要算法。

推荐文章如下:

常见的加密算法代码示例
Android常用的加密方式
加密方式分类:

一、对称加密算法(加密和解密密钥相同,DES、3DES、AES)

密钥管理复杂,不适合互联网,一般用于内部系统;安全性中;加密速度极快,适合大数据量的加密处理;加解密的过程是可逆的。

名称 密钥名称 运行速度 安全性 资源消耗
DES 56位 较快
3DES 112位或168位
AES 128、192、256位
  • DES算法:DES 加密算法是一种 分组密码,以 64 位为 分组对数据 加密,它的 密钥长度 是 56 位,加密解密 用 同一算法。DES 加密算法是对 密钥 进行保密,而 公开算法,包括加密和解密算法。这样,只有掌握了和发送方 相同密钥 的人才能解读由 DES加密算法加密的密文数据。因此,破译 DES 加密算法实际上就是 搜索密钥的编码。对于 56 位长度的 密钥 来说,如果用 穷举法 来进行搜索的话,其运算次数为 2 ^ 56 次。
  • 3DES算法:是基于 DES 的 对称算法,对 一块数据 用 三个不同的密钥 进行 三次加密,强度更高。
  • AES算法:AES 加密算法是密码学中的 高级加密标准,该加密算法采用 对称分组密码体制,密钥长度的最少支持为 128 位、 192 位、256 位,分组长度 128 位,算法应易于各种硬件和软件实现。这种加密算法是美国联邦政府采用的 区块加密标准。本身就为了取代DES的,具有更好的安全性、效率和灵活性。
@NotThreadSafe
public class AesHelper {
    private SecretKeySpec keySpec;
    private IvParameterSpec iv;
 
    public AesHelper(byte[] aesKey, byte[] iv) {
        if (aesKey == null || aesKey.length < 16 || (iv != null && iv.length < 16)) {
            throw new RuntimeException("错误的初始密钥");
        }
        if (iv == null) {
            iv = Md5Util.compute(aesKey);
        }
        keySpec = new SecretKeySpec(aesKey, "AES");
        this.iv = new IvParameterSpec(iv);
    }
 
    public AesHelper(byte[] aesKey) {
        if (aesKey == null || aesKey.length < 16) {
            throw new RuntimeException("错误的初始密钥");
        }
        keySpec = new SecretKeySpec(aesKey, "AES");
        this.iv = new IvParameterSpec(Md5Util.compute(aesKey));
    }
 
    public byte[] encrypt(byte[] data) {
        byte[] result = null;
        Cipher cipher = null;
        try {
            cipher = Cipher.getInstance("AES/CFB/NoPadding");
            cipher.init(Cipher.ENCRYPT_MODE, keySpec, iv);
            result = cipher.doFinal(data);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        return result;
    }
 
    public byte[] decrypt(byte[] secret) {
        byte[] result = null;
        Cipher cipher = null;
        try {
            cipher = Cipher.getInstance("AES/CFB/NoPadding");
            cipher.init(Cipher.DECRYPT_MODE, keySpec, iv);
            result = cipher.doFinal(secret);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        return result;
    }
 
    public static byte[] randomKey(int size) {
        byte[] result = null;
        try {
            KeyGenerator gen = KeyGenerator.getInstance("AES");
            gen.init(size, new SecureRandom());
            result = gen.generateKey().getEncoded();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        return result;
    }
}

二、非对称加密算法 (分公钥、私钥,加密跟解密不同但是一对,RSA、ECC)

密钥管理 容易,安全性高,加密速度比较慢,适合 小数据量 加解密或数据签名。

名称 成熟度 安全性 运算速度 资源消耗
RSA
ECC
  • RSA算法:RSA 加密算法是目前最有影响力的 公钥加密算法,并且被普遍认为是目前 最优秀的公钥方案 之一。RSA 是第一个能同时用于 加密 和 数字签名 的算法,它能够 抵抗 到目前为止已知的 所有密码攻击,已被 ISO 推荐为公钥数据加密标准。RSA 加密算法 基于一个十分简单的数论事实:将两个大 素数 相乘十分容易,但想要对其乘积进行 因式分解 却极其困难,因此可以将 乘积 公开作为 加密密钥。
@NotThreadSafe
public class RsaHelper {
    private static final Logger logger = LoggerFactory.getLogger(RsaHelper.class);
    private RSAPublicKey publicKey;
    private RSAPrivateCrtKey privateKey;
 
    static {
        Security.addProvider(new BouncyCastleProvider()); //使用bouncycastle作为加密算法实现
    }
 
    public RsaHelper(String publicKey, String privateKey) {
        this(Base64Util.decode(publicKey), Base64Util.decode(privateKey));
    }
 
    public RsaHelper(byte[] publicKey, byte[] privateKey) {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance("RSA");
            if (publicKey != null && publicKey.length > 0) {
                this.publicKey = (RSAPublicKey)keyFactory.generatePublic(new X509EncodedKeySpec(publicKey));
            }
            if (privateKey != null && privateKey.length > 0) {
                this.privateKey = (RSAPrivateCrtKey)keyFactory.generatePrivate(new PKCS8EncodedKeySpec(privateKey));
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
 
    public RsaHelper(String publicKey) {
        this(Base64Util.decode(publicKey));
    }
 
    public RsaHelper(byte[] publicKey) {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance("RSA");
            if (publicKey != null && publicKey.length > 0) {
                this.publicKey = (RSAPublicKey)keyFactory.generatePublic(new X509EncodedKeySpec(publicKey));
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
 
    public byte[] encrypt(byte[] content) {
        if (publicKey == null) {
            throw new RuntimeException("public key is null.");
        }
 
        if (content == null) {
            return null;
        }
 
        try {
            Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
            cipher.init(Cipher.ENCRYPT_MODE, publicKey);
            int size = publicKey.getModulus().bitLength() / 8 - 11;
            ByteArrayOutputStream baos = new ByteArrayOutputStream((content.length + size - 1) / size * (size + 11));
            int left = 0;
            for (int i = 0; i < content.length; ) {
                left = content.length - i;
                if (left > size) {
                    cipher.update(content, i, size);
                    i += size;
                } else {
                    cipher.update(content, i, left);
                    i += left;
                }
                baos.write(cipher.doFinal());
            }
            return baos.toByteArray();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
 
    public byte[] decrypt(byte[] secret) {
        if (privateKey == null) {
            throw new RuntimeException("private key is null.");
        }
 
        if (secret == null) {
            return null;
        }
 
        try {
            Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            int size = privateKey.getModulus().bitLength() / 8;
            ByteArrayOutputStream baos = new ByteArrayOutputStream((secret.length + size - 12) / (size - 11) * size);
            int left = 0;
            for (int i = 0; i < secret.length; ) {
                left = secret.length - i;
                if (left > size) {
                    cipher.update(secret, i, size);
                    i += size;
                } else {
                    cipher.update(secret, i, left);
                    i += left;
                }
                baos.write(cipher.doFinal());
            }
            return baos.toByteArray();
        } catch (Exception e) {
            logger.error("rsa decrypt failed.", e);
        }
        return null;
    }
 
    public byte[] sign(byte[] content) {
        if (privateKey == null) {
            throw new RuntimeException("private key is null.");
        }
        if (content == null) {
            return null;
        }
        try {
            Signature signature = Signature.getInstance("SHA1WithRSA");
            signature.initSign(privateKey);
            signature.update(content);
            return signature.sign();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
 
    public boolean verify(byte[] sign, byte[] content) {
        if (publicKey == null) {
            throw new RuntimeException("public key is null.");
        }
        if (sign == null || content == null) {
            return false;
        }
        try {
            Signature signature = Signature.getInstance("SHA1WithRSA");
            signature.initVerify(publicKey);
            signature.update(content);
            return signature.verify(sign);
        } catch (Exception e) {
            logger.error("rsa verify failed.", e);
        }
        return false;
    }
}
  • ECC算法:ECC 也是一种 非对称加密算法,主要优势是在某些情况下,它比其他的方法使用 更小的密钥,比如 RSA 加密算法,提供 相当的或更高等级 的安全级别。不过一个缺点是 加密和解密操作 的实现比其他机制 时间长 (相比 RSA 算法,该算法对 CPU 消耗严重)。
NotThreadSafe
public class EccHelper {
    private static final Logger logger = LoggerFactory.getLogger(EccHelper.class);
    private static final int SIZE = 4096;
    private BCECPublicKey  publicKey;
    private BCECPrivateKey privateKey;
 
    static {
        Security.addProvider(new BouncyCastleProvider());
    }
 
    public EccHelper(String publicKey, String privateKey) {
        this(Base64Util.decode(publicKey), Base64Util.decode(privateKey));
    }
 
    public EccHelper(byte[] publicKey, byte[] privateKey) {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance("EC", "BC");
            if (publicKey != null && publicKey.length > 0) {
                this.publicKey = (BCECPublicKey)keyFactory.generatePublic(new X509EncodedKeySpec(publicKey));
            }
            if (privateKey != null && privateKey.length > 0) {
                this.privateKey = (BCECPrivateKey)keyFactory.generatePrivate(new PKCS8EncodedKeySpec(privateKey));
            }
        } catch (ClassCastException e) {
            throw new RuntimeException("", e);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
 
    public EccHelper(String publicKey) {
        this(Base64Util.decode(publicKey));
    }
 
    public EccHelper(byte[] publicKey) {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance("EC", "BC");
            if (publicKey != null && publicKey.length > 0) {
                this.publicKey = (BCECPublicKey)keyFactory.generatePublic(new X509EncodedKeySpec(publicKey));
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
 
    public byte[] encrypt(byte[] content) {
        if (publicKey == null) {
            throw new RuntimeException("public key is null.");
        }
        try {
            Cipher cipher = Cipher.getInstance("ECIES", "BC");
            cipher.init(Cipher.ENCRYPT_MODE, publicKey);
            int size = SIZE;
            ByteArrayOutputStream baos = new ByteArrayOutputStream((content.length + size - 1) / size * (size + 45));
            int left = 0;
            for (int i = 0; i < content.length; ) {
                left = content.length - i;
                if (left > size) {
                    cipher.update(content, i, size);
                    i += size;
                } else {
                    cipher.update(content, i, left);
                    i += left;
                }
                baos.write(cipher.doFinal());
            }
            return baos.toByteArray();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
 
    public byte[] decrypt(byte[] secret) {
        if (privateKey == null) {
            throw new RuntimeException("private key is null.");
        }
        try {
            Cipher cipher = Cipher.getInstance("ECIES", "BC");
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            int size = SIZE + 45;
            ByteArrayOutputStream baos = new ByteArrayOutputStream((secret.length + size + 44) / (size + 45) * size);
            int left = 0;
            for (int i = 0; i < secret.length; ) {
                left = secret.length - i;
                if (left > size) {
                    cipher.update(secret, i, size);
                    i += size;
                } else {
                    cipher.update(secret, i, left);
                    i += left;
                }
                baos.write(cipher.doFinal());
            }
            return baos.toByteArray();
        } catch (Exception e) {
            logger.error("ecc decrypt failed.", e);
        }
        return null;
    }
 
    public byte[] sign(byte[] content) {
        if (privateKey == null) {
            throw new RuntimeException("private key is null.");
        }
        try {
            Signature signature = Signature.getInstance("SHA1withECDSA", "BC");
            signature.initSign(privateKey);
            signature.update(content);
            return signature.sign();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
 
    public boolean verify(byte[] sign, byte[] content) {
        if (publicKey == null) {
            throw new RuntimeException("public key is null.");
        }
        try {
            Signature signature = Signature.getInstance("SHA1withECDSA", "BC");
            signature.initVerify(publicKey);
            signature.update(content);
            return signature.verify(sign);
        } catch (Exception e) {
            logger.error("ecc verify failed.", e);
        }
        return false;
    }
}

三、摘要算法hash算法 (变长变定长,不能还原,MD5、SHA、CRC )

它是不可逆的,不可以解密。所以它只能算的上是一种单向加密算法

名称 安全性 速度
SHA-1
MD5
  • MD5(Message-Digest Algorithm 5(信息-摘要算法5)):用的是哈希函数,它的典型应用是对一段信息产生 信息摘要,以 防止被篡改。无论是多长的输入,MD5 都会输出长度为 128bits 的一个串 (通常用 16 进制 表示为 32 个字符)。
public static final byte[] computeMD5(byte[] content) {
    try {
        MessageDigest md5 = MessageDigest.getInstance("MD5");
        return md5.digest(content);
    } catch (NoSuchAlgorithmException e) {
        throw new RuntimeException(e);
    }
}
  • SHA1(Secure Hash Algorithm 1):比MD5安全性高,但速度相对于MD5慢,对于长度小于 2 ^ 64 位的消息,SHA1 会产生一个 160 位的 消息摘要。
public static byte[] computeSHA1(byte[] content) {
    try {
        MessageDigest sha1 = MessageDigest.getInstance("SHA1");
        return sha1.digest(content);
    } catch (NoSuchAlgorithmException e) {
        throw new RuntimeException(e);
    }
}
  • HMAC(Hash Message Authentication Code): 密钥相关的 哈希运算消息认证码(Hash-based Message Authentication Code),HMAC 运算利用 哈希算法 (MD5、SHA1 等),以 一个密钥 和 一个消息 为输入,生成一个 消息摘要 作为 输出。
    HMAC 发送方 和 接收方 都有的 key 进行计算,而没有这把 key 的第三方,则是 无法计算 出正确的 散列值的,这样就可以 防止数据被篡改。
@NotThreadSafe
public class HMacHelper {
    private static final Logger logger = LoggerFactory.getLogger(HMacHelper.class);
    private Mac mac;
 
    /**
     * MAC算法可选以下多种算法
     * HmacMD5/HmacSHA1/HmacSHA256/HmacSHA384/HmacSHA512
     */
    private static final String KEY_MAC = "HmacMD5";
    public HMacHelper(String key) {
        try {
            SecretKey secretKey = new SecretKeySpec(key.getBytes(ConstField.UTF8), KEY_MAC);
            mac = Mac.getInstance(secretKey.getAlgorithm());
            mac.init(secretKey);
        } catch (Exception e) {
            logger.error("create hmac helper failed.", e);
        }
    }
    public byte[] sign(byte[] content) {
        return mac.doFinal(content);
    }
    
    public boolean verify(byte[] signature, byte[] content) {
        try {
            byte[] result = mac.doFinal(content);
            return Arrays.equals(signature, result);
        } catch (Exception e) {
            logger.error("verify sig failed.", e);
        }
        return false;
    }
}

四、Base64

它是一种数据编码方式,虽然是可逆的,但是它的编码方式是公开的,无所谓加密,它是一种使用4个字节的文本来表示3个字节的原始二进制数据。

  • 常用于网络传输,在某些基于文本的协议中,如果需要传输图片或者文件等,我们知道图片的存储格式是二进制数据,而非文本格式,我们必须将二进制的数据编码成文本格式,这时候Base64就派上用场了。
  • 另外,由于某些系统中只能使用ASCII字符。Base64就是用来将非ASCII字符的数据转换成ASCII字符的一种方法。
  • Base64编码之后往往比原始数据要大,所以它并没有压缩数据。

你可能感兴趣的:(【Android】加密算法相关知识点)