数据统计不等于大数据

近两年来,“大数据”被广泛应用到各行各业,而近阶段又有着明显的过热迹象。从央视的春运迁徙图到姚晨看到微博数据的惊呼;从两会期间的两会大数据,到《星星》都叫兽的高低领毛衣,“大数据”被人们推到了一个前所未有的高度,同时也从一个高精尖的科研方向变成了一个世人皆知的营销词汇。

预测和推荐,是如何实现的?

目前主要的推荐算法大致可以分为两类。一个是基于行为,一个是基于内容。当然,针对不同的领域,不同的预测和推荐的对象,又会有十余种算法。这就不是本文展开的内容了。

基于行为的分析,顾名思义,即对用户在互联网、移动互联网留下的“痕迹”,即浏览、点击、收藏、购买、二次购买的分析,得出未来会选择购买的预测和推荐结果。基于行为的分析,属于群体智慧,综合利用群体用户的行为偏好。用户之间会相互影响,更加符合现实世界中的用户行为。

基于内容的分析,

包括对文字、图片、音频、视频等信息的分析,得出预测和推荐的结论。内容的“基因”和用户的偏好相匹配,最有代表的是潘多拉的音乐推荐项目,其将曲库中所有歌曲都由400多位专家打上标签,然后建立个人与音乐的联系,从而完成音乐的推荐。内容的分析只针对个人,与用户之间关系无关。

你可能感兴趣的:(数据统计不等于大数据)