史上最简单的python算法入门书,像看小说一样学习算法你敢信?

算法是计算机科学领域最重要的基石之一,同时也是出了名地难学。最出名的一本书莫过于算法导论了

史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第1张图片

但是,这本非常非常出名的大头书,真的是谁看谁知道。看了之后都有点怀疑人生,一大批人也因此从入门到放弃。

史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第2张图片

但是还是有很多人跑去学算法,为什么呢?

史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第3张图片

原因还是算法工程师的待遇实在是太好了,做技术岗位的都能达到月薪三万,如果再会点业务做管理呢?想都不敢想哦。

其实算法真的难吗?其实不然。如果你觉得难得话,那肯定是因为你没有看过这本书

史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第4张图片

号称能像看小说一样看懂算法。我一开始也是不信的,毕竟我可是看过算法导论的人。因为是图灵出版社(国内最好的IT类书籍出版社)出版的书籍,所以我还是买来看了一下,结果就真的就像是看小说一样,花了一天时间全部看完了。我们也可以看一下别人的评论。

史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第5张图片
史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第6张图片
史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第7张图片

我自己是看过这本书的,所以我对上面的评论也深信不疑。由于好评太多了,我就不一一展示了,想要详细了解的可以去看一下豆瓣评论。接下来我们看一下部分内容。

内容部分

一、算法简介

1.1二分查找 :

一个有序数组中找一个数的位置(对应该数字所在数组下标index)。

def binary_search(list, item):

low = 0

high = len(list) - 1

while low <= high:

mid = int((low + high) / 2)

guess = list[mid]

if guess == item:

return mid

if guess > item:

high = mid - 1

else:

low = mid + 1

return None

my_list = [1, 3, 5, 7, 9]

print(binary_search(my_list, 3)) # => 1

print(binary_search(my_list, -1)) # => None

也可用递归实现

操作对象:数组

使用前提:有序的数组

性能方面:时间复杂度O(logn)

1.2 旅行商问题:

旅行商前往n个城市,确保旅程最短。求可能的排序:n!种可能。

二、选择排序

2.1 数组和链表

数组:连续存储在硬盘中;链表:分散存储在硬盘中;

史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第8张图片

2.2 选择排序:将数组元素按照从小到大的顺序排序,每次从数组中取出最小值

def findSmallest(arr):

smallest = arr[0]

smallest_index = 0

for i in range(1, len(arr)):

if arr[i] < smallest:

smallest = arr[i]

smallest_index = i

return smallest_index

def selectionSort(arr):

newArr = []

for i in range(len(arr)):

smallest = findSmallest(arr)

newArr.append(arr.pop(smallest))

return newArr

print(selectionSort([5, 3, 6, 2, 10])) #[2, 3, 5, 6, 10]

三、递归----一种优雅的问题解决方法

适用递归的算法要满足:

基限条件(即返回的条件)

递归条件(调用递归函数)

特点:

自己调用自己,调用栈在内存叠加,如果没有返回条件,将无限循环调用,占用大量内存,最终爆栈终止进程。

还有一种高级一点的递归:

尾递归 (将结果也放入函数参数,内存里面调用栈只有一个当前运行的函数进程)

举个简单的例子: 阶乘f(n) = n!

def fact(x): #递归

if x == 1:

return 1

else:

return x * fact(x-1) #注意这里跟尾递归不同

#尾递归

def factorial(x,result):

if x == 1:

return result

else:

return factorial(x-1,x*result)

if __name__ == '__main__':

print(fact(5)) #5*4*3*2*1 = 120

print(factorial(5,1)) #120

四、快速排序 (分而治之策略)

每次选取数组中一个元素x当作分水岭(一般选取第一个元素):[小于元素x的数组]+[x]+[大于元素x的数组],然后递归调用,直到最后处理的数组元素只剩下零个或者一个

平均时间复杂度O(nlogn)

最差情况时间复杂度O(n^2) (出现这个情况是:快排的数组本来就是有序的(顺序/倒序),选取的元素又是开头第一个的话,每次变成只能处理一侧的数组了。 改善:可以选取数组中间的元素当作分水岭pivot,只有两边的元素就都能均匀处理了)

#!/usr/bin/python

def quicksort(array):

if len(array) < 2:

return array

else:

pivot = array[0]

less = [i for i in array[1:] if i <= pivot] #超级像伪代码!

print(less)

greater = [i for i in array[1:] if i > pivot]

print(greater)

return quicksort(less) + [pivot] + quicksort(greater)

if __name__ == '__main__':

print(quicksort([7,1,10,5,3,2,6]))

'''

[1, 5, 3, 2, 6]

[10]

[]

[5, 3, 2, 6]

[3, 2]

[6]

[2]

[]

[1, 2, 3, 5, 6, 7, 10]

'''

到目前算法为止,复杂度对比:

史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第9张图片

排序到算法有:

冒泡排序,选择排序,快速排序,归并排序,堆排序(感兴趣到小伙伴可以自己去搜索)

下面列出冒泡排序和归并排序算法:

#冒泡排序,每次寻找最小到元素往前排,就像汽水从下往上冒一样。所以叫冒泡排序啦

def simpleSort(array):

for i in range(len(array)-1):

for j in range(i,len(array)):

if array[i] > array[j]:

temp = array[i]

array[i] = array[j]

array[j] = temp

return array

print(simpleSort([9,8,6,7,4,5,3,11,2])) #[2, 3, 4, 5, 6, 7, 8, 9, 11]

冒泡排序时间复杂度O(n^2)

两个for循环搞定,每一轮for循环找到一个最小值。for循环两两元素对比交换

归并排序:

def mergeSort(array):

if len(array) < 2:

return array

else:

mid = int(len(array)/2)

left = mergeSort(array[:mid])

right = mergeSort(array[mid:])

return merge(left, right)

def merge(left, right): #并两个已排序好的列表,产生一个新的已排序好的列表

result = [] # 新的已排序好的列表

i = 0 # 下标

j = 0

# 对两个列表中的元素 两两对比

# 将最小的元素,放到result中,并对当前列表下标加1

while i < len(left) and j < len(right):

if left[i] <= right[j]:

result.append(left[i])

i += 1

else:

result.append(right[j])

j += 1

# 此时left或者right其中一个已经添加完毕,剩下的就全部加到result后面即可

result += left[i:]

result += right[j:]

return result

array = [9,5,3,0,6,2,7,1,4,8]

result = mergeSort(array)

print('排序后:',result) #排序后: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

归并排序时间复杂度是O(nlogn)

最坏情况也是O(nlogn)

后面还有很多,我就不一一列举了。这本书将深奥的知识用通俗易懂的语言表达出来,同时加上生动形象的配图,看了的都说好。

最后,学习Python中的小伙伴,需要学习资料的话,可以前往我的微信公众号:速学Python,后台回复:,即可拿Python学习资料

这里有我自己整理了一套最新的python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。送给正在学习python的小伙伴!这里是python学习者聚集地,欢迎初学和进阶中的小伙伴!

史上最简单的python算法入门书,像看小说一样学习算法你敢信?_第10张图片

你可能感兴趣的:(史上最简单的python算法入门书,像看小说一样学习算法你敢信?)