OpenVINO 部署 Mask-RCNN 实例分割

OpenVINO 部署 Mask-RCNN 实例分割_第1张图片

本文转载自OpenCV学堂。

模型介绍

OpenVINO支持Mask-RCNN与yolact两种实例分割模型的部署,其中Mask-RCNN系列的实例分割网络是OpenVINO官方自带的,直接下载即可,yolact是来自第三方的公开模型库。

这里以instance-segmentation-security-0050模型为例说明,该模型基于COCO数据集训练,支持80个类别的实例分割,加上背景为81个类别。

OpenVINO支持部署Faster-RCNN与Mask-RCNN网络时候输入的解析都是基于两个输入层,它们分别是:

im_data : NCHW=[1x3x480x480]
im_info: 1x3 三个值分别是H、W、Scale=1.0

输出有四个,名称与输出格式及解释如下:

  • name: classes, shape: [100, ]
    预测的100个类别可能性,值在[0~1]之间

  • name: scores: shape: [100, ]
    预测的100个Box可能性,值在[0~1]之间

  • name: boxes, shape: [100, 4]
    预测的100个Box坐标,左上角与右下角,基于输入的480x480

  • name: raw_masks, shape: [100, 81, 28, 28]
    Box ROI区域的实例分割输出,81表示类别(包含背景),28x28表示ROI大小。

上面都是官方文档给我的关于模型的相关信息,但是我发现该模型的实际推理输raw_masks输出格式大小为:100x81x14x14这个算文档没更新吗?

代码演示

这边的代码输出层跟输入层都不止一个,所以为了简化,我用了两个for循环设置了输入与输出数据精度,然后直接通过hardcode来获取推理之后各个输出层对应的数据部分,首先获取类别,根据类别ID与Box的索引,直接获取实例分割mask,然后随机生成颜色,基于mask实现与原图BOX ROI的叠加,产生了实例分割之后的效果输出。完整的演示代码分为下面几步:

IE引擎初始化与模型加载

InferenceEngine::Core ie;
std::vector coco_labels;
read_coco_labels(coco_labels);
cv::RNG rng(12345);

cv::Mat src = cv::imread("D:/images/sport-girls.png");
cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
int im_h = src.rows;
int im_w = src.cols;

InferenceEngine::CNNNetwork network = ie.ReadNetwork(xml, bin);
InferenceEngine::InputsDataMap inputs = network.getInputsInfo();
InferenceEngine::OutputsDataMap outputs = network.getOutputsInfo();

设置输入与输出数据格式

std::string image_input_name = "";
std::string image_info_name = "";
int in_index = 0;
for (auto item : inputs) {
    if (in_index == 0) {
        image_input_name = item.first;
        auto input_data = item.second;
        input_data->setPrecision(Precision::U8);
        input_data->setLayout(Layout::NCHW);
    }
    else {
        image_info_name = item.first;
        auto input_data = item.second;
        input_data->setPrecision(Precision::FP32);
    }
    in_index++;
}

for (auto item : outputs) {
    std::string output_name = item.first;
    auto output_data = item.second;
    output_data->setPrecision(Precision::FP32);
    std::cout << "output name: " << output_name << std::endl;
}

设置blob输入数据与推理

auto executable_network = ie.LoadNetwork(network, "CPU");
auto infer_request = executable_network.CreateInferRequest();

auto input = infer_request.GetBlob(image_input_name);
matU8ToBlob(src, input);

auto input2 = infer_request.GetBlob(image_info_name);
auto imInfoDim = inputs.find(image_info_name)->second->getTensorDesc().getDims()[1];
InferenceEngine::MemoryBlob::Ptr minput2 = InferenceEngine::as(input2);
auto minput2Holder = minput2->wmap();
float *p = minput2Holder.as::value_type *>();
p[0] = static_cast(inputs[image_input_name]->getTensorDesc().getDims()[2]);
p[1] = static_cast(inputs[image_input_name]->getTensorDesc().getDims()[3]);
p[2] = 1.0f;

infer_request.Infer();

解析输出结果

auto scores = infer_request.GetBlob("scores");
auto boxes = infer_request.GetBlob("boxes");
auto clazzes = infer_request.GetBlob("classes");
auto raw_masks = infer_request.GetBlob("raw_masks");
const float* score_data = static_cast::value_type*>(scores->buffer());
const float* boxes_data = static_cast::value_type*>(boxes->buffer());
const float* clazzes_data = static_cast::value_type*>(clazzes->buffer());
const auto raw_masks_data = static_cast::value_type*>(raw_masks->buffer());
const SizeVector scores_outputDims = scores->getTensorDesc().getDims();
const SizeVector boxes_outputDims = boxes->getTensorDesc().getDims();
const SizeVector mask_outputDims = raw_masks->getTensorDesc().getDims();
const int max_count = scores_outputDims[0];
const int object_size = boxes_outputDims[1];
printf("mask NCHW=[%d, %d, %d, %d]\n", mask_outputDims[0], mask_outputDims[1], mask_outputDims[2], mask_outputDims[3]);
int mask_h = mask_outputDims[2];
int mask_w = mask_outputDims[3];
size_t box_stride = mask_h * mask_w * mask_outputDims[1];
for (int n = 0; n < max_count; n++) {
    float confidence = score_data[n];
    float xmin = boxes_data[n*object_size] * w_rate;
    float ymin = boxes_data[n*object_size + 1] * h_rate;
    float xmax = boxes_data[n*object_size + 2] * w_rate;
    float ymax = boxes_data[n*object_size + 3] * h_rate;
    if (confidence > 0.5) {
        cv::Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
        cv::Rect box;
        float x1 = std::min(std::max(0.0f, xmin), static_cast(im_w));
        float y1 = std::min(std::max(0.0f,ymin), static_cast(im_h));
        float x2 = std::min(std::max(0.0f, xmax), static_cast(im_w));
        float y2 = std::min(std::max(0.0f, ymax), static_cast(im_h));
        box.x = static_cast(x1);
        box.y = static_cast(y1);
        box.width = static_cast(x2 - x1);
        box.height = static_cast(y2 - y1);
        int label = static_cast(clazzes_data[n]);
        std::cout <<"confidence: "<< confidence<<" class name: "<< coco_labels[label] << std::endl;
        // 解析mask
        float* mask_arr = raw_masks_data + box_stride * n + mask_h * mask_w * label;
        cv::Mat mask_mat(mask_h, mask_w, CV_32FC1, mask_arr);
        cv::Mat roi_img = src(box);
        cv::Mat resized_mask_mat(box.height, box.width, CV_32FC1);
        cv::resize(mask_mat, resized_mask_mat, cv::Size(box.width, box.height));
        cv::Mat uchar_resized_mask(box.height, box.width, CV_8UC3,color);
        roi_img.copyTo(uchar_resized_mask, resized_mask_mat <= 0.5);
        cv::addWeighted(uchar_resized_mask, 0.7, roi_img, 0.3, 0.0f, roi_img);
        cv::putText(src, coco_labels[label].c_str(), box.tl()+(box.br()-box.tl())/2, cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(0, 0, 255), 1, 8);
    }
}

最终程序测试结果:

OpenVINO 部署 Mask-RCNN 实例分割_第2张图片

END

备注:部署

OpenVINO 部署 Mask-RCNN 实例分割_第3张图片

模型压缩与应用部署交流群

模型压缩、网络压缩、神经网络加速、轻量级网络设计、知识蒸馏、应用部署、MNN、NCNN等技术,

若已为CV君其他账号好友请直接私信。

我爱计算机视觉

微信号:aicvml

QQ群:805388940

微博知乎:@我爱计算机视觉

投稿:[email protected]

网站:www.52cv.net

OpenVINO 部署 Mask-RCNN 实例分割_第4张图片

在看,让更多人看到  OpenVINO 部署 Mask-RCNN 实例分割_第5张图片

你可能感兴趣的:(网络,深度学习,计算机视觉,数据可视化,神经网络)