一致性Hash算法

1. 起源

一致性Hash算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot Spot)问题,初衷和CARP十分相似。一致性Hash修正了CARP使用的简单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。

2. 普通的HASH算法的缺点

在使用Redis集群的时候,如果直接使用HASH算法 hash(key) % length,当缓存服务器变化时(宕机或新增节点),length字段变化,导致所有缓存的数据需要重新进行HASH运算,这样就导致原来的哪些数据访问不到了。而这段时间如果访问量上升了,容易引起服务器雪崩。

3. 一致性哈希

通过对2^32取模的方式,保证了在增加/删除缓存服务器的情况下,其他缓存服务器的缓存仍然可用,从而不引起雪崩问题。

下面对一致性哈希算法分析:

3.1 环形Hash空间

按照常用的hash算法来将对应的key哈希到一个具有232次方个桶的空间中,即0~(232)-1的数字空间。现在我们可以将这些数字头尾相连,想象成一个闭合的环形。如下图

一致性Hash算法_第1张图片

3.2 数据映射

现在我们将object1、object2、object3、object4四个对象通过特定的Hash函数计算出对应的key值,然后散列到hash换上。如下图:

Hash(object1)=key1;
Hash(object2)=key2;
Hash(object3)=key3;
Hash(object4)=key4;


一致性Hash算法_第2张图片

3.3 机器映射

在采用一致性哈希算法的分布式集群中将新的机器加入,其原理是通过使用与对象存储一样的Hash算法将机器也映射到环种(一般情况下对机器的hash计算是采用机器的IP或者唯一的别名作为输入值),然后以顺时针的方向计算,将所有对象存储到离自己最近的机器中。

假设现在有NODE1,NODE2,NODE3三台机器中,通过hash算法得到对应的KEY值(红色圆),映射到环中,其示意图如下:

Hash(NODE1)=KEY1;
Hash(NODE2)=KEY2;
Hash(NODE3)=KEY3;

一致性Hash算法_第3张图片

通过上图可以看出对象与机器处于同一个哈希空间中,这样按顺时针转动
object1(对象)存储到了NODE1(机器)中,
object3(对象)存储到了NODE2(机器)中,
object2、object4(对象)存储到了NODE3(机器)中。
在这样的部署环境中,hash环是不会变更的,因此,通过算出对象的hash值就能快速的定位到对应的机器中,这样就能找到对象真正的存储位置了。

3.4 机器删除与添加

3.4.1 节点(机器)的删除

以上面的分布式集群为例,如果NODE2出现故障被删除了,那么按照顺时针迁移的方法,object3将会被迁移到NODE3中,这样仅仅是object3的映射位置发生了变化,其他的对象没有任何的变动,如下图:


一致性Hash算法_第4张图片

3.4.2 节点(机器)的添加

如果往集群中添加一个新的节点NODE4,通过对应的Hash算法得到KEY4,并映射到环中,如下图:


一致性Hash算法_第5张图片

通过按照顺时针迁移的规则,那么object2被迁移到NODE4中,其他对象还保持这原有的存储位置。通过对节点的添加和删除的分析,一致性哈希算法在保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说非常合适的,避免了大量收数据迁移,减少了服务器的压力。

3.5 平衡性

根据上面的图解分析,一致性哈希算法满足了单调性和负载均衡的特性以及一般hash算法的分散性,但这还并不能当做其被广泛应用的原由,因为缺少了平衡性。下面将分析一致性哈希算法是如何满足平衡性的。hash算法是不保证平衡性的,如上面只部署了NODE1和NODE3的情况(NODE2被删除的图),object1存储在NODE1中,而object2、object3、object4都存储在NODE3中,这样就造成了非常不平衡的状态。在一致性哈希算法中,为了尽可能的满足平衡性,其引入了虚拟节点。

何为虚拟节点?虚拟节点(Virtual node)是实际节点(机器)在hash空间的复制品(replica),一个实际节点对应了若干个“虚拟节点”,这个对应个数也称为“复制个数”,“虚拟节点”在hash空间中以hash值排列。

在上面只部署了NODE1和NODE3的情况(NODE2被删除的图)为例,之前的对象在机器上的分布很不均衡,现在我们以2个副本(每个节点复制2个)为例,这样整个hash环就存在4个虚拟节点,最后对象映射的关系图如下:


一致性Hash算法_第6张图片

根据上图可知对象的映射关系:
object1->NODE1-1(虚拟节点,映射NODE1),
object2->NODE1-2(虚拟节点,映射NODE1),
object3->NODE3-2(虚拟节点,映射NODE3),
object4->NODE3-1(虚拟节点,映射NODE3),
通过虚拟节点的引入,对象的分布就比较均衡了。那么在实际操作中,真正的对象查询是如何工作的呢?对象从hash到虚拟节点到实际节点的转换如下图:


一致性Hash算法_第7张图片

虚拟节点”的hash计算可以采用对应节点的IP地址加数字后缀的方式。例如假设NODE1的IP地址为192.168.1.100。引入“虚拟节点”前,计算 cache A 的 hash 值:
Hash(“192.168.1.100”);
引入“虚拟节点”后,计算“虚拟节”点NODE1-1和NODE1-2的hash值:
Hash(“192.168.1.100#1”); // NODE1-1
Hash(“192.168.1.100#2”); // NODE1-2

原文链接:https://blog.csdn.net/cb_lcl/article/details/81448570

你可能感兴趣的:(一致性Hash算法)