在Hive语句中使用脚本(如python和shell)进行map和reduce,需要将利用命令transform(或者指定map和reduce),配合加入的脚本文件add
file
别名后面as省略也行,空格直接加,如: table app_stats t1, app_data t2;
先举一个小例子:
add file ${python_script_path}/lanch_interval_count.py;
drop table temp_lanch_interval2;
create table temp_lanch_interval2 as select reportdate, appid,channelname, app_version,
deviceid,ts,sameday
from (
from (
from (
select fl.reportdate, fl.appid, 1 as
app_version,fn.channelname,fl.deviceid,fl.linux_time
from (select reportdate, appid,
app_version,deviceid,linux_time from factloglanch
WHERE dt>= ? and
dt<= ? ) fl
left outer join factnewuser_nodimid fn on (fl.deviceid =
fn.deviceid and fl.appid = fn.appid)
) a
map reportdate, appid, channelname,app_version,
deviceid,linux_time using '/bin/cat'
as reportdate, appid, channelname,app_version,
deviceid,linux_time
cluster by appid, channelname,deviceid
) b
reduce reportdate, appid,
channelname,app_version, deviceid,linux_time using
'lanch_interval_count.py'
as reportdate, appid,app_version, channelname,deviceid,ts,sameday
) c
Hive中的TRANSFORM:使用脚本完成Map/Reduce
hive> select * from test;
OK
1 3
2 2
3 1
要输出每一列的md5值,hive中是没有这个udf,用Python的代码#!/home/tops/bin/python
#!/home/tops/bin/python
import sys
import hashlib
for line in sys.stdin:
line =
line.strip()
arr =
line.split()
md5_arr =
[]
for a in
arr:
md5_arr.append(hashlib.md5(a).hexdigest())
"\t".join(md5_arr)
在Hive中使用脚本(如,python和shell),首先要将他们加入:
add file /xxxx/test.py
然后,在程序中使用TRANSFORM语法调用:
SELECT TRANSFORM
(col1, col2) USING './test.py' AS (new1,
new2) FORM test;
其中,AS指定输出列,分别对应的列名。如果省略这句,Hive会将第1个tab前的结果作为key,后面其余作为value。
注意:TRANSFORM的分割符号,永远是\t。传入、传出脚本时都默认必须使用\t。没有其他分隔符
所以会出问题,在结合INSERT [OVERWRITE] table使用时,目标表的分隔符不是\t,是其他分隔符如';',
这样就会出错。
直接使用map 和reduce命令:
SELECT
MAP (…) USING ‘xx.py’是使用的语法,
MAP、REDUCE只不过是TRANSFORM的别名,Hive不保证一定会在map/reduce中调用脚本。看看官方文档是怎么说的:
Formally, MAP ... and REDUCE ... are syntactic transformations of
SELECT TRANSFORM ( ... ). In
other words, they serve as comments or notes to the reader of the
query.
BEWARE: Use of these keywords may be dangerous as (e.g.) typing
"REDUCE" does not force a reduce phase
to occur and typing "MAP" does not force a new map
phase!
所以,混用map reduce语法关键字可能会引起混淆,所以建议都用TRANSFORM。
如果不是脚本文件,而是awk、sed等系统内置命令,可以直接使用(不用add file),如:
map reportdate, appid, channelname,app_version,
deviceid,linux_time using
'/bin/cat'
as reportdate, appid, channelname,app_version,
deviceid,linux_time
cluster by appid, channelname,deviceid
如果,表中有MAP,ARRAY等复杂类型,
CREATE TABLE features
(
id
BIGINT,
norm_features MAP );
用TRANSFORM命令进行操作,就是将脚本文件的输出,设置为对应格式,Python里面就是print出对应的格式,而复杂类型就用其对应的分隔符
如,MAP类型的KV分割符。
SELECT TRANSFORM(stuff)
USING 'script'
AS (thing1 INT, thing2 MAP)