基于CRNN的文本字符交易验证码识别--Paddle实战

基于CRNN的文本字符验证码识别

Paddle学习资料:

1.Paddle​​​​​​学习地址:​​​​​​飞桨AI Studio - 人工智能学习与实训社区

2.AI Studio基本操作(一) Notebook篇

3.飞桨框架文档

4.PaddleOCR学习–Github

5.十分钟掌握PaddleOCR使用

本次通过AI达人创造营学习PaddlePaddle基本使用,并参考其他开源项目完成PaddleOCR比赛实战。接下来将介绍使用Paddle进行验证码识别比赛及具体训练流程。

比赛链接

2022数字中国创新大赛(简称2022 DCIC)科技金融子赛道——基于文本字符的交易验证码识别

项目链接:https://aistudio.baidu.com/aistudio/projectdetail/3501451?channelType=0&channel=0

1 比赛简介

1.1 赛题背景:

验证码作为性价较高的安全验证方法,在多场合得到了广泛的应用,有效地防止了机器人进行身份欺骗,其中,以基于文本字符的静态验证码最为常见。随着使用的深入,噪声点、噪声线、重叠、形变等干扰手段层出不穷,不断提升安全防范级别。RPA技术作为企业数字化转型的关键,因为其部署的非侵入式备受企业青睐,验证码识别率不高往往限制了RPA技术的应用。一个能同时过滤多种干扰的验证码模型,对于相关自动化技术的拓展使用有着一定的商业价值。

1.2 赛题背景:

验证码作为性价较高的安全验证方法,在多场合得到了广泛的应用,有效地防止了机器人进行身份欺骗,其中,以基于文本字符的静态验证码最为常见。随着使用的深入,噪声点、噪声线、重叠、形变等干扰手段层出不穷,不断提升安全防范级别。RPA技术作为企业数字化转型的关键,因为其部署的非侵入式备受企业青睐,验证码识别率不高往往限制了RPA技术的应用。一个能同时过滤多种干扰的验证码模型,对于相关自动化技术的拓展使用有着一定的商业价值。

1.3 赛题任务:

本次大赛以已标记字符信息的实例字符验证码图像数据为训练样本,参赛选手需基于提供的样本构建模型,对测试集中的字符验证码图像进行识别,提取有效的字符信息。训练数据集不局限于提供的数据,可以加入公开的数据集。

2 数据与评测

2.1 数据简介

此次比赛为选手提供15000张带标注信息的训练数据集,每张训练数据都是包含一个4位文本字符的验证码图像,并对当前图像中的文本字符进行了标注;测试数据集含25000张验证码图像。

2.2 数据说明

提供训练数据集打包文件train_imgs.zip(文件名称即对应该图片文本字符标签);提供测试数据集打包文件test_imgs.zip,测试数据集包含待识别的图像文件。

文件名称 说明
train_imgs.zip 训练集图片,包含15000张验证码图片
test_imgs.zip 测试集图片,里面包含25000张待识别验证码图片
submit_example.csv 提交样例,参赛者参考此数据格式进行提交

2.3 评测标准

本次比赛采用评价方式为准确率(accuracy),对于参赛者提交的结果,要求完全识别出完整的验证码文本信息,最终根据测试图像数据预测的准确率进行从高到低的排序。
同等准确率的以提交结果的时间排名,先提交者胜出。

P ( 准 确 率 ) = 所 有 待 检 测 的 目 标 数 量 / 检 测 正 确 的 目 标 数 量 P( 准确率 )= 所有待检测的目标数量 /检测正确的目标数量 P()=/

3 构建训练集和验证集

数据集链接:https://aistudio.baidu.com/aistudio/datasetdetail/126477

大家运行项目直接需要挂载该比赛数据集

3.1 数据集准备

!ls data/data126477/
# 一共三个文件
# submit_example.csv  test_dataset.zip  training_dataset.zip
submit_example.csv  test_dataset.zip  training_dataset.zip
# 解压数据集
!unzip -o data/data126477/training_dataset.zip -d data/
!unzip -o data/data126477/test_dataset.zip -d  data/
!cp data/data126477/submit_example.csv data/

Archive:  data/data126477/training_dataset.zip
   creating: data/training_dataset/
  inflating: data/training_dataset/00IS.png  
  inflating: data/training_dataset/00O3.png  
  inflating: data/training_dataset/0180.png  
  inflating: data/training_dataset/01BA.png 
  ......

3.2 划分数据集

我们可以将15000张训练集按照8:2进行划分,12000张作为训练集 3000作为验证集

import pandas as pd
import shutil
import os
import glob
from tqdm import tqdm

from sklearn.model_selection import train_test_split

data_path = 'train_data/'
dcic_data_path = './PaddleOCR/train_data/dcic_data/'
dcic_train = './PaddleOCR/train_data/dcic_data/train'
dcic_valid = './PaddleOCR/train_data/dcic_data/valid'
dcic_test = './PaddleOCR/train_data/dcic_data/test'

os.makedirs(dcic_data_path, exist_ok=True)
os.makedirs(dcic_train, exist_ok=True)
os.makedirs(dcic_valid, exist_ok=True)
os.makedirs(dcic_test, exist_ok=True)

# print([filepath for filepath in glob.glob('data/dcic_data/training_dataset/')])
# print(glob.glob('data/dcic_data/training_dataset/*.png'))
# print(os.listdir('data/training_dataset'))

train_images = os.listdir('data/training_dataset')
test_images = os.listdir('data/test_dataset')
train_imgs, valid_imgs = train_test_split(train_images, test_size=0.2, random_state=42, shuffle=True)
print(len(train_imgs), len(valid_imgs))

all_txts = []
# shutil.copy('data/dcic_data/training_dataset/0A5o.png', 'train_data/dcic_data/train/0A5o.png')
with open('./PaddleOCR/train_data/dcic_data/rec_gt_train.txt', 'w', encoding='utf-8') as f:
    for image in tqdm(train_imgs):
        shutil.copy(f'data/training_dataset/{image}', f'./PaddleOCR/train_data/dcic_data/train/{image}')
        txt = image.split('.png')[0]
        all_txts.append(txt)
        f.write(f'train/{image}\t{txt}' + '\n')
with open('./PaddleOCR/train_data/dcic_data/rec_gt_valid.txt', 'w', encoding='utf-8') as f:
    for image in tqdm(valid_imgs):
        shutil.copy(f'data/training_dataset/{image}', f'./PaddleOCR/train_data/dcic_data/valid/{image}')
        txt = image.split('.png')[0]
        all_txts.append(txt)
        f.write(f'valid/{image}\t{txt}' + '\n')
for image in tqdm(test_images):
    shutil.copy(f'data/test_dataset/{image}', f'./PaddleOCR/train_data/dcic_data/test/{image}')

# with open('train_data/dcic_data/captcha.txt', 'w', encoding='utf-8') as f:
#     all_str = ''.join(all_txts)
#     dict_char=sorted(set(all_str))
#     for char in dict_char:
#         f.write(char+'\n')
 14%|█▍        | 1736/12000 [00:00<00:00, 17353.23it/s]

12000 3000


100%|██████████| 12000/12000 [00:00<00:00, 17161.60it/s]
100%|██████████| 3000/3000 [00:00<00:00, 17321.81it/s]
100%|██████████| 25000/25000 [00:01<00:00, 17481.43it/s]
import cv2
import matplotlib.pyplot as plt
# 读图
raw_img = cv2.imread("train_data/dcic_data/valid/01jQ.png")
plt.figure()
plt.subplot(2,1,1)
# 可视化原图
plt.imshow(raw_img)
# 缩放并归一化
padding_im, draw_img = resize_norm_img(raw_img)
plt.subplot(2,1,2)
# 可视化网络输入图
plt.imshow(draw_img)
plt.show()

4 配置文件

PaddleOCR训练与验证可以通过config文件进行配置,以下为确认配置文件中的数据路径是否正确,以 rec_icdar15_train.yml为例:

Train:
  dataset:
    name: SimpleDataSet
    # 训练数据根目录
    data_dir: ./train_data/ic15_data/
    # 训练数据标签
    label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]  # [3,32,320]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 8
    use_shared_memory: False

Eval:
  dataset:
    name: SimpleDataSet
    # 评估数据根目录
    data_dir: ./train_data/ic15_data
    # 评估数据标签
    label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 4
    use_shared_memory: False
    
# 复制一份配置文件,作为dcic比赛配置文件

!cp ./PaddleOCR/configs/rec/rec_icdar15_train.yml ./PaddleOCR1/rec_dcic_train.yml 

将以下内容填充到./PaddleOCR/configs/rec/rec_dcic_train.yml,为了方面大家理解,我这里加了一些核心注释:

Global:
  use_gpu: true
  # 训练轮数
  epoch_num: 300 
  log_smooth_window: 20
  print_batch_step: 10
  # 模型保存路径
  save_model_dir: ./output/rec/dcic/
  save_epoch_step: 3
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
  pretrained_model: pretrain_models/rec_mv3_none_bilstm_ctc/best_accuracy
  checkpoints:
  save_inference_dir: ./
  use_visualdl: False
  infer_img: doc/imgs_words_en/word_10.png
  # for data or label process
  character_dict_path: ppocr/utils/en_dict.txt
  max_text_length: 4
  infer_mode: False
  use_space_char: False
  save_res_path: ./output/rec/predicts_dcic.txt
# 优化器设置
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.0005
  regularizer:
    name: 'L2'
    factor: 0
# 模型结构
Architecture:
  model_type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: large
  Neck:
    name: SequenceEncoder
    encoder_type: rnn
    # rnn隐层单元个数,超参数
    hidden_size: 96
  Head:
    name: CTCHead
    fc_decay: 0

Loss:
  name: CTCLoss

PostProcess:
  name: CTCLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
    name: SimpleDataSet
    # 训练集路径
    data_dir: ./train_data/dcic_data/
    # 训练集标签文件
    label_file_list: ["./train_data/dcic_data/rec_gt_train.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 96]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 0
    use_shared_memory: False

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/dcic_data
    label_file_list: ["./train_data/dcic_data/rec_gt_valid.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 96]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 4
    use_shared_memory: False

4 训练评估与预测

下载预训练模型:为了加快收敛速度,建议下载训练好的模型在 比赛 数据上进行 finetune

4.1 训练

%cd PaddleOCR/
# 下载MobileNetV3的预训练模型
!wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
# 解压模型参数
!tar -xf pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train.tar
!mv rec_mv3_none_bilstm_ctc_v2.0_train ./pretrain_models
/home/aistudio/PaddleOCR
--2022-02-19 20:43:08--  https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
正在解析主机 paddleocr.bj.bcebos.com (paddleocr.bj.bcebos.com)... 182.61.200.229, 182.61.200.195, 2409:8c04:1001:1002:0:ff:b001:368a
正在连接 paddleocr.bj.bcebos.com (paddleocr.bj.bcebos.com)|182.61.200.229|:443... 已连接。
已发出 HTTP 请求,正在等待回应... 200 OK
长度: 51200000 (49M) [application/x-tar]
正在保存至: “./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train.tar”

rec_mv3_none_bilstm 100%[===================>]  48.83M  17.6MB/s    in 2.8s    

2022-02-19 20:43:11 (17.6 MB/s) - 已保存 “./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train.tar” [51200000/51200000])

启动训练命令很简单,指定好配置文件即可。另外在命令行中可以通过 -o 修改配置文件中的参数值。启动训练命令如下所示

其中:

  • Global.pretrained_model: 加载的预训练模型路径
  • Global.character_dict_path : 字典路径(这里只支持26个小写字母+数字)
  • Global.eval_batch_step : 评估频率
  • Global.epoch_num: 总训练轮数
!pwd
!cd PaddleOCR
!pwd
/home/aistudio
/home/aistudio
!python3 tools/train.py -c configs/rec/rec_dcic_train.yml \
   -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train/best_accuracy
python3: can't open file 'tools/train.py': [Errno 2] No such file or directory

4.2 模型评估

评估数据集可以通过 configs/rec/rec_dcic_train.yml 修改Eval中的 label_file_path 设置。

这里默认使用 dcic 的评估集,加载刚刚训练好的模型权重:

!python tools/eval.py -c configs/rec/rec_dcic_train.yml -o Global.checkpoints=output/rec/dcic/best_accuracy

4.3 预测

使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。

train_data/dcic_data/train/0a1E.png

默认预测图片存储在 infer_img 里,通过 -o Global.checkpoints 加载训练好的参数文件:

!python tools/infer_rec.py -c configs/rec/rec_dcic_train.yml \
    -o Global.checkpoints=./output/rec/dcic/best_accuracy \
    Global.infer_img=./train_data/dcic_data/valid/01jU.png

[2022/01/24 03:54:25] root INFO: Architecture : 
[2022/01/24 03:54:25] root INFO:     Backbone : 
[2022/01/24 03:54:25] root INFO:         model_name : large
[2022/01/24 03:54:25] root INFO:         name : MobileNetV3
[2022/01/24 03:54:25] root INFO:         scale : 0.5
[2022/01/24 03:54:25] root INFO:     Head : 
[2022/01/24 03:54:25] root INFO:         fc_decay : 0
[2022/01/24 03:54:25] root INFO:         name : CTCHead
[2022/01/24 03:54:25] root INFO:     Neck : 
[2022/01/24 03:54:25] root INFO:         encoder_type : rnn
[2022/01/24 03:54:25] root INFO:         hidden_size : 96
[2022/01/24 03:54:25] root INFO:         name : SequenceEncoder
[2022/01/24 03:54:25] root INFO:     Transform : None
[2022/01/24 03:54:25] root INFO:     algorithm : CRNN
[2022/01/24 03:54:25] root INFO:     model_type : rec
[2022/01/24 03:54:25] root INFO: Eval : 
[2022/01/24 03:54:25] root INFO:     dataset : 
[2022/01/24 03:54:25] root INFO:         data_dir : ./train_data/dcic_data
[2022/01/24 03:54:25] root INFO:         label_file_list : ['./train_data/dcic_data/rec_gt_valid.txt']
[2022/01/24 03:54:25] root INFO:         name : SimpleDataSet
[2022/01/24 03:54:25] root INFO:         transforms : 
[2022/01/24 03:54:25] root INFO:             DecodeImage : 
[2022/01/24 03:54:25] root INFO:                 channel_first : False
[2022/01/24 03:54:25] root INFO:                 img_mode : BGR
[2022/01/24 03:54:25] root INFO:             CTCLabelEncode : None
[2022/01/24 03:54:25] root INFO:             RecResizeImg : 
[2022/01/24 03:54:25] root INFO:                 image_shape : [3, 32, 96]
[2022/01/24 03:54:25] root INFO:             KeepKeys : 
[2022/01/24 03:54:25] root INFO:                 keep_keys : ['image', 'label', 'length']
[2022/01/24 03:54:25] root INFO:     loader : 
[2022/01/24 03:54:25] root INFO:         batch_size_per_card : 256
[2022/01/24 03:54:25] root INFO:         drop_last : False
[2022/01/24 03:54:25] root INFO:         num_workers : 4
[2022/01/24 03:54:25] root INFO:         shuffle : False
[2022/01/24 03:54:25] root INFO:         use_shared_memory : False
[2022/01/24 03:54:25] root INFO: Global : 
[2022/01/24 03:54:25] root INFO:     cal_metric_during_train : True
[2022/01/24 03:54:25] root INFO:     character_dict_path : ppocr/utils/en_dict.txt
[2022/01/24 03:54:25] root INFO:     checkpoints : ./output/rec/dcic/best_accuracy
[2022/01/24 03:54:25] root INFO:     debug : False
[2022/01/24 03:54:25] root INFO:     distributed : False
[2022/01/24 03:54:25] root INFO:     epoch_num : 300
[2022/01/24 03:54:25] root INFO:     eval_batch_step : [0, 2000]
[2022/01/24 03:54:25] root INFO:     infer_img : ./train_data/dcic_data/valid/01jU.png
[2022/01/24 03:54:25] root INFO:     infer_mode : False
[2022/01/24 03:54:25] root INFO:     log_smooth_window : 20
[2022/01/24 03:54:25] root INFO:     max_text_length : 4
[2022/01/24 03:54:25] root INFO:     pretrained_model : pretrain_models/rec_mv3_none_bilstm_ctc/best_accuracy
[2022/01/24 03:54:25] root INFO:     print_batch_step : 10
[2022/01/24 03:54:25] root INFO:     save_epoch_step : 3
[2022/01/24 03:54:25] root INFO:     save_inference_dir : ./
[2022/01/24 03:54:25] root INFO:     save_model_dir : ./output/rec/dcic/
[2022/01/24 03:54:25] root INFO:     save_res_path : ./output/rec/predicts_dcic.txt
[2022/01/24 03:54:25] root INFO:     use_gpu : True
[2022/01/24 03:54:25] root INFO:     use_space_char : False
[2022/01/24 03:54:25] root INFO:     use_visualdl : False
[2022/01/24 03:54:25] root INFO: Loss : 
[2022/01/24 03:54:25] root INFO:     name : CTCLoss
[2022/01/24 03:54:25] root INFO: Metric : 
[2022/01/24 03:54:25] root INFO:     main_indicator : acc
[2022/01/24 03:54:25] root INFO:     name : RecMetric
[2022/01/24 03:54:25] root INFO: Optimizer : 
[2022/01/24 03:54:25] root INFO:     beta1 : 0.9
[2022/01/24 03:54:25] root INFO:     beta2 : 0.999
[2022/01/24 03:54:25] root INFO:     lr : 
[2022/01/24 03:54:25] root INFO:         learning_rate : 0.0005
[2022/01/24 03:54:25] root INFO:     name : Adam
[2022/01/24 03:54:25] root INFO:     regularizer : 
[2022/01/24 03:54:25] root INFO:         factor : 0
[2022/01/24 03:54:25] root INFO:         name : L2
[2022/01/24 03:54:25] root INFO: PostProcess : 
[2022/01/24 03:54:25] root INFO:     name : CTCLabelDecode
[2022/01/24 03:54:25] root INFO: Train : 
[2022/01/24 03:54:25] root INFO:     dataset : 
[2022/01/24 03:54:25] root INFO:         data_dir : ./train_data/dcic_data/
[2022/01/24 03:54:25] root INFO:         label_file_list : ['./train_data/dcic_data/rec_gt_train.txt']
[2022/01/24 03:54:25] root INFO:         name : SimpleDataSet
[2022/01/24 03:54:25] root INFO:         transforms : 
[2022/01/24 03:54:25] root INFO:             DecodeImage : 
[2022/01/24 03:54:25] root INFO:                 channel_first : False
[2022/01/24 03:54:25] root INFO:                 img_mode : BGR
[2022/01/24 03:54:25] root INFO:             CTCLabelEncode : None
[2022/01/24 03:54:25] root INFO:             RecResizeImg : 
[2022/01/24 03:54:25] root INFO:                 image_shape : [3, 32, 96]
[2022/01/24 03:54:25] root INFO:             KeepKeys : 
[2022/01/24 03:54:25] root INFO:                 keep_keys : ['image', 'label', 'length']
[2022/01/24 03:54:25] root INFO:     loader : 
[2022/01/24 03:54:25] root INFO:         batch_size_per_card : 256
[2022/01/24 03:54:25] root INFO:         drop_last : True
[2022/01/24 03:54:25] root INFO:         num_workers : 0
[2022/01/24 03:54:25] root INFO:         shuffle : True
[2022/01/24 03:54:25] root INFO:         use_shared_memory : False
[2022/01/24 03:54:25] root INFO: profiler_options : None
[2022/01/24 03:54:25] root INFO: train with paddle 2.2.1 and device CUDAPlace(0)
W0124 03:54:25.561218  8122 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W0124 03:54:25.566077  8122 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2022/01/24 03:54:30] root INFO: resume from ./output/rec/dcic/best_accuracy
[2022/01/24 03:54:30] root INFO: infer_img: ./train_data/dcic_data/valid/01jU.png
[2022/01/24 03:54:30] root INFO: 	 result: o1lU	0.9584374
[2022/01/24 03:54:30] root INFO: success!

我们可以看到预测结果

[2022/01/24 03:54:30] root INFO: infer_img: ./train_data/dcic_data/valid/01jU.png
[2022/01/24 03:54:30] root INFO: 	 result: o1lU	0.9584374
[2022/01/24 03:54:30] root INFO: success!
# 预测全部测试集
!python tools/infer_rec.py -c configs/rec/rec_dcic_train.yml \
-o Global.checkpoints=./output/rec/dcic/best_accuracy \
Global.infer_img=../data/test_dataset

!pwd
/home/aistudio/PaddleOCR
import pandas as pd

submit = pd.read_csv('../data/data126477/submit_example.csv')
# print(submit)

nums = []
results = []
with open('output/rec/predicts_dcic.txt', 'r', encoding='utf-8') as f:
    # print(f.read().split('\t')[:2])
    data = f.read().split('\t')
    for i in range(2, len(data), 2):
        img,res=data[i - 2:i]
        # print(img)
        img=img.split('/')[-1].split('.png')[0]
        # print(img)
        nums.append(int(img))
        results.append(res)

result_df=pd.DataFrame({'num':nums,'tag':results})
result_df=result_df.sort_values('num',ascending=True)
result_df.to_csv('baseline.csv',index=None)
result_df
num tag
0 1 01Fb
1 10 04xs
2 100 0Onx
113 101 0OU1
224 102 0p3c
... ... ...
234 10208 OxkP
235 10209 oxmH
237 10210 0XMy
238 10211 0xp6
239 10212 0xq2

本文参考:

https://aistudio.baidu.com/aistudio/projectdetail/3438655?channelType=0&channel=0

https://aistudio.baidu.com/aistudio/projectdetail/3526082

你可能感兴趣的:(CV方向,深度学习,paddle,paddlepaddle,人工智能,crnn,ocr)