winograd算法,它的本质就是通过减少卷积运算中的乘法,来减少计算量。我们以3x3,s=1的卷积为例,讲讲Winograd算法的具体流程。
一个 r × s r\times s r×s的卷积核,和一个输入特征图进行卷积运算,得到 m × n m\times n m×n的输出,我们记为:
F ( m × n , r × s ) F(m\times n,r\times s) F(m×n,r×s)
其计算量为
μ ( F ( m × n , r × s ) ) = ( m + r − 1 ) ∗ ( n + s − 1 ) \mu (F(m\times n,r\times s))=(m+r-1)*(n+s-1) μ(F(m×n,r×s))=(m+r−1)∗(n+s−1)
和普通的直接卷积( m ∗ n ∗ r ∗ s m*n*r*s m∗n∗r∗s)相比,计算量减少了
m ∗ n ∗ r ∗ s ( m + r − 1 ) ∗ ( n + s − 1 ) \dfrac{m*n*r*s}{(m+r-1)*(n+s-1)} (m+r−1)∗(n+s−1)m∗n∗r∗s
当 m > > r , n > > s m>>r,n>>s m>>r,n>>s时,上式近似等于 r ∗ s r*s r∗s
Winograd 的证明方法较为复杂,要用到数论中的一些知识,但是,使用起来很简单。只需要按照如下公式计算:
其中, ⨀ \bigodot ⨀表示哈达玛乘积, A , B , G A,B,G A,B,G为相应的变换矩阵,根据输出大小和卷积核大小不同有不同的定义,但是是提前确定了的。每种输出大小和卷积核的 A , G , B A,G,B A,G,B 具体是多少,可以通过 https://github.com/andravin/wincnn 的脚本计算。 g g g为 r × r r\times r r×r的卷积核, d d d为 ( m + r − 1 ) × ( m + r − 1 ) (m+r-1)\times (m+r-1) (m+r−1)×(m+r−1)的输入特征块
这里只给出 m = 2 , r = 3 m=2,r=3 m=2,r=3的情况下, A , B , G A,B,G A,B,G相应的值:
F(2x2,3x3)更具体的计算流程可参考博客
因为我们加速的是VGG16网络,整个网络只包含3x3,s=1的卷积、2x2的最大池化和全连接层,因此我们只实现了两个IP核
其中,fc负责计算全连接层,WinogradConv负责计算卷积、激活函数,并且该卷积层后若还接了一个池化层,则也会进行池化运算。我们着重关注WinogradConv IP核。
上图是该IP的代码结构,其中load.cpp用于加载和写回数据,winotrans.cpp用于计算输入特征的Winograd变换和输出特征的逆变换,在该加速器的设计中,我们对权重预先做了Winograd变换,因此权重直接加载即可,main.cpp是该设计的顶层文件,为了掩盖数据传输时间,我们在加载输入和计算之间作了乒乓操作:
void compute_output(data_t* in1,data_t* in2,data_t* in3,data_t* in4, data_t* weight1,
data_t* weight2,data_t* weight3,data_t* weight4,
data_t fm_out_buff[Tm][16][N][N], int m, int r, int c,int ch_in,int fsize) {
/***************************************************/
#pragma HLS ARRAY_PARTITION variable=fm_out_buff complete dim=1
data_t in_buff1[16][Tn][N][N];
#pragma HLS ARRAY_PARTITION variable=in_buff1 complete dim=2
data_t in_buff2[16][Tn][N][N];
#pragma HLS ARRAY_PARTITION variable=in_buff2 complete dim=2
data_t wt_buff1[Tm][Tn][N][N];
#pragma HLS ARRAY_PARTITION variable=wt_buff1 complete dim=2
#pragma HLS ARRAY_PARTITION variable=wt_buff1 complete dim=1
data_t wt_buff2[Tm][Tn][N][N];
#pragma HLS ARRAY_PARTITION variable=wt_buff2 complete dim=2
#pragma HLS ARRAY_PARTITION variable=wt_buff2 complete dim=1
//
for(int i=0;i<16;i++)
for(int r=0;r<N;r++)
for(int c=0;c<N;c++){
#pragma HLS PIPELINE II=1
for(int m=0;m<Tm;m++){
#pragma HLS UNROLL
fm_out_buff[m][i][r][c]=(data_t)0.0;
}
}
//
bool pp=true;
int n=0;
load_wrapper(in1,in2,in3,in4,weight1,weight2,weight3,weight4,r,c,m,n,ch_in,fsize,in_buff1,wt_buff1);
for (n = Tn; n < ch_in; n += Tn) {
#pragma HLS LOOP_TRIPCOUNT min=127 max=127 avg=127
if(pp){
load_wrapper(in1,in2,in3,in4,weight1,weight2,weight3,weight4,r,c,m,n,ch_in,fsize,in_buff2,wt_buff2);
compute_wrapper(in_buff1, wt_buff1, fm_out_buff);
pp=false;
}
else{
load_wrapper(in1,in2,in3,in4,weight1,weight2,weight3,weight4,r,c,m,n,ch_in,fsize,in_buff1,wt_buff1);
compute_wrapper(in_buff2, wt_buff2, fm_out_buff);
pp=true;
}
}
if(pp){
compute_wrapper(in_buff1, wt_buff1, fm_out_buff);
}
else{
compute_wrapper(in_buff2, wt_buff2, fm_out_buff);
}
}
同时,我们也在计算和写回数据之间作了乒乓操作:
void pingpongWinogradConv(data_t* in1,data_t* in2,data_t* in3,data_t* in4, data_t* weight1,
data_t* weight2,data_t* weight3,data_t* weight4,
data_t* bias, data_t* out, int ch_out, int ch_in, int fsize,int pool) {
#pragma HLS INTERFACE s_axilite port=pool bundle=CTRL
#pragma HLS INTERFACE m_axi depth=100 port=bias offset=slave bundle=W max_read_burst_length=256
#pragma HLS INTERFACE s_axilite port=return bundle=CTRL
#pragma HLS INTERFACE s_axilite port=fsize bundle=CTRL
#pragma HLS INTERFACE s_axilite port=ch_in bundle=CTRL
#pragma HLS INTERFACE s_axilite port=ch_out bundle=CTRL
#pragma HLS INTERFACE m_axi depth=1536 port=out offset=slave bundle=OUT max_write_burst_length=256
#pragma HLS INTERFACE m_axi depth=4608 port=weight1 offset=slave bundle=W1 max_read_burst_length=256
#pragma HLS INTERFACE m_axi depth=768 port=in1 offset=slave bundle=IN1 max_read_burst_length=256
#pragma HLS INTERFACE m_axi depth=4608 port=weight2 offset=slave bundle=W2 max_read_burst_length=256
#pragma HLS INTERFACE m_axi depth=768 port=in2 offset=slave bundle=IN2 max_read_burst_length=256
#pragma HLS INTERFACE m_axi depth=4608 port=weight3 offset=slave bundle=W3 max_read_burst_length=256
#pragma HLS INTERFACE m_axi depth=768 port=in3 offset=slave bundle=IN3 max_read_burst_length=256
#pragma HLS INTERFACE m_axi depth=4608 port=weight4 offset=slave bundle=W4 max_read_burst_length=256
#pragma HLS INTERFACE m_axi depth=768 port=in4 offset=slave bundle=IN4 max_read_burst_length=256
//
data_t fm_out_buff1[Tm][16][N][N];
#pragma HLS ARRAY_PARTITION variable=fm_out_buff1 complete dim=1
data_t fm_out_buff2[Tm][16][N][N];
#pragma HLS ARRAY_PARTITION variable=fm_out_buff2 complete dim=1
data_t bias_buff[1024/Tm][Tm];
#pragma HLS ARRAY_PARTITION variable=bias_buff complete dim=2
int m, i, j, next_m, next_i, next_j;
m = i = j = 0;
bool pingpong = true;
//
memcpy((data_t*)bias_buff,(const data_t*)bias,sizeof(data_t)*ch_out);
compute_output(in1,in2,in3,in4, weight1,weight2,weight3,weight4, fm_out_buff1, m,i,j ,ch_in, fsize);
while (true) {
#pragma HLS LOOP_TRIPCOUNT min=255 max=255 avg=255
next_block(i, j, m, next_i, next_j, next_m, fsize, ch_out);
if (next_m + Tm > ch_out)
break;
if (pingpong) {
compute_output(in1,in2,in3,in4, weight1,weight2,weight3,weight4, fm_out_buff2, next_m, next_i, next_j, ch_in, fsize);
write_back(out, fm_out_buff1,bias_buff[m/Tm], m, i, j, fsize,pool);
pingpong = false;
}
else {
compute_output(in1,in2,in3,in4, weight1,weight2,weight3,weight4, fm_out_buff1, next_m, next_i, next_j, ch_in, fsize);
write_back(out, fm_out_buff2,bias_buff[m/Tm], m, i, j, fsize,pool);
pingpong = true;
}
m = next_m;
i = next_i;
j = next_j;
}
if (pingpong) {
write_back(out, fm_out_buff1, bias_buff[m/Tm],m, i, j, fsize,pool);
}
else {
write_back(out, fm_out_buff2,bias_buff[m/Tm], m, i, j, fsize,pool);
}
}
我们将图片和权重存在SD卡中,以供zynq的ps端读取,读取完成后,ps通过调用IP核,启动PL端的加速器。以下是源代码的结构
sd_io.c,param_reader.c用于从SD卡读取权重和图片,pl.c用于调用PL端IP核进行加速计算,layer.c,inference.c为PL端推理代码,main.c为主函数所在文件
以下是推理部分代码,我们设置了3个buffer:out1q,out2q,out3q,用于存储中间结果,同时通过memalign函数实现地址的8字节对齐,以配合HLS代码中的大位宽读写。
void inference_test(XPingpongwinogradconv *hls_conv,XFc *hls_fc,FData* fdata,FWeight* fw){
//
short* out1q=(short*)memalign(8,1000000*sizeof(short));
short* out2q=(short*)memalign(8,1000000*sizeof(short));
short* out3q=(short*)memalign(8,1000000*sizeof(short));
int correct=0;
XTime tEnd, tCur;
u32 tUsed;
for(int i=0;i<100;i++){
printf("i=%d\n",i);
XTime_GetTime(&tCur);
//block1,32x32,64
pl_conv(hls_conv,fdata->images+i*32*32*3,fw->winoweight[0],fw->bias[0],out1q,3,64,32,0);
pl_conv(hls_conv,out1q,fw->winoweight[1],fw->bias[1],out3q,64,64,32,1);
//block2,16x16,128
pl_conv(hls_conv,out3q,fw->winoweight[2],fw->bias[2],out2q,64,128,16,0);
pl_conv(hls_conv,out2q,fw->winoweight[3],fw->bias[3],out3q,128,128,16,1);
//block3,8x8,256
pl_conv(hls_conv,out3q,fw->winoweight[4],fw->bias[4],out1q,128,256,8,0);
pl_conv(hls_conv,out1q,fw->winoweight[5],fw->bias[5],out2q,256,256,8,0);
pl_conv(hls_conv,out2q,fw->winoweight[6],fw->bias[6],out1q,256,256,8,0);
//block4,8x8,512
pl_conv(hls_conv,out1q,fw->winoweight[7],fw->bias[7],out2q,256,512,8,0);
pl_conv(hls_conv,out2q,fw->winoweight[8],fw->bias[8],out1q,512,512,8,0);
pl_conv(hls_conv,out1q,fw->winoweight[9],fw->bias[9],out2q,512,512,8,0);
//block5,8x8,512
pl_conv(hls_conv,out2q,fw->winoweight[10],fw->bias[10],out1q,512,512,8,0);
pl_conv(hls_conv,out1q,fw->winoweight[11],fw->bias[11],out2q,512,512,8,0);
pl_conv(hls_conv,out2q,fw->winoweight[12],fw->bias[12],out1q,512,512,8,0);
pl_fc(hls_fc,out1q,fw->weight[13],fw->bias[13],out2q);
//argmax
short max=-10000;
int max_idx=-1;
for(int k=0;k<10;k++){
if(out2q[k]>max){
max=out2q[k];
max_idx=k;
}
}
XTime_GetTime(&tEnd); //��ȡ����ʱ��
tUsed = ((tEnd-tCur)*1000000)/(COUNTS_PER_SECOND); //����õ���ʱus
printf("time elapsed is %d us\r\n",tUsed);
//check
if(max_idx==fdata->labels[i]){
printf("right\n");
correct++;
}
else
printf("error\n");
}
printf("test acc is %f \%",correct/100.0);
}