以保留小数点后两位小数为例:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random([5, 5]), columns=['A1', 'A2', 'A3','A4','A5'])
print(df)
print("==================================")
print(df.round(2))
以A1列保留小数点后一位、A2列保留小数点后两位为例
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random([5, 5]), columns=['A1', 'A2', 'A3','A4','A5'])
print(df)
print("==================================")
print(df.round({'A1': 1, 'A2': 2}))
通过Series对象设置df小数位数,A1一位,A2零位,A3二位小数
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random([5, 5]), columns=['A1', 'A2', 'A3','A4','A5'])
print(df)
print("==================================")
s1 = pd.Series([1, 0, 2], index=['A1', 'A2', 'A3'])
print(df.round(s1))
通过自定义函数设置小数位数,返回类型为object,以设置为二位小数为例
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random([5, 5]), columns=['A1', 'A2', 'A3','A4','A5'])
print(df)
print("==================================")
print(df.applymap(lambda x: '%.2f'%x))
学习以下代码:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random([5, 5]), columns=['A1', 'A2', 'A3', 'A4', 'A5'])
print(df)
print("==================================================================")
df['百分比'] = df['A1'].apply(lambda x: format(x, '.0%')) # 整列保留0位小数
print(df)
print("==================================================================")
df['百分比'] = df['A1'].apply(lambda x: format(x, '.2%')) # 整列保留两位小数
print(df)
print("==================================================================")
df['百分比'] = df['A1'].map(lambda x: '{:.0%}'.format(x)) # 整列保留0位小数,也可以使用map函数
print(df)
import pandas as pd
data = [['aaaaaaa', '1月', 49768889], ['bbbbbbb', '2月', 11777775], ['ccccccc', '3月', 13799990]]
columns = ['name', 'month', 'num']
df = pd.DataFrame(data=data, columns=columns)
print(df)
print("================================================")
df['num'] = df['num'].apply(lambda x: format(int(x), ','))
print(df)