⭐️写在前面
- 这里是温文艾尔的学习之路
- 如果对你有帮助,给博主一个免费的点赞以示鼓励把QAQ
- 博客主页 温文艾尔的学习小屋
- ⭐️更多文章请关注温文艾尔主页
- 文章发布日期:2022.03.07
- java学习之路!
- 欢迎各位点赞评论收藏⭐️
- 冲冲冲
- ⭐️上一篇内容:【备战面试】面试题打卡——Mysql相关面试题总结
观看文章之前推荐看作者以前的文章,这样理解起来会更加顺畅哦
文章题目总结来自于:1.牛客2.程序员库森(微信公众号Coolsen88)3.以往文章
HashMap底层源码解析上(超详细图解+面试题)
HashMap底层源码解析下(超详细图解)
在JDK1.7中和JDK1.8中有所区别:
在JDK1.7中,由”数组+链表
“组成,数组是HashMap的主体,链表则是主要为了解决哈希冲突
而存在的。
在JDK1.8中,有“数组+链表+红黑树
”组成。当链表过长,则会严重影响HashMap的性能,红黑树搜索时间复杂度是O(logn)
,而链表是O(n)
。因此,JDK1.8对数据结构做了进一步的优化,引入了红黑树,链表和红黑树在达到一定条件会进行转换:
无序
的解决Hash冲突方法有:开放定址法
、再哈希法
、链地址法(HashMap中常见的拉链法)
、简历公共溢出区。HashMap中采用的是链地址法。
再散列法
,基本思想就是,如果p=H(key)
出现冲突时,则以p为基础,再次hash,p1=H(p)
,如果p1再次出现冲突,则以p1为基础,以此类推,直到找到一个不冲突的哈希地址pi。因此开放定址法所需要的hash表的长度要大于等于所需要存放的元素,而且因为存在再次hash,所以只能在删除的节点上做标记,而不能真正删除节点
R1=H1(key1)
发生冲突时,再计算R2=H2(key1)
,直到没有冲突为止。这样做虽然不易产生堆集,但增加了计算的时间。注意开放定址法和再哈希法的区别是
在数组比较小时如果出现红黑树结构,反而会降低效率,而红黑树需要进行左旋右旋,变色,这些操作来保持平衡,同时数组长度小于64时,搜索时间相对要快些,总之是为了加快搜索速度,提高性能
JDK1.8以前HashMap的实现是数组+链表
,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当HashMap中有大量的元素都存放在同一个桶中时,这个桶下有一条长长的链表,此时HashMap就相当于单链表,假如单链表有n个元素,遍历的时间复杂度就从O(1)退化成O(n),完全失去了它的优势,为了解决此种情况,JDK1.8中引入了红黑树(查找的时间复杂度为O(logn))来优化这种问题
HashMap中的threshold
是HashMap所能容纳键值对的最大值。计算公式为length*LoadFactory
。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数也越大
loadFactory越趋近于1,那么数组中存放的数据(entry也就越来越多),数据也就越密集,也就会有更多的链表长度处于更长的数值,我们的查询效率就会越低,当我们添加数据,产生hash冲突的概率也会更高
默认的loadFactory是0.75,loadFactory越小,越趋近于0,数组中个存放的数据(entry)也就越少,表现得更加稀疏
如果负载因子小一些比如是0.4,那么初始长度16*0.4=6,数组占满6个空间就进行扩容,很多空间可能元素很少甚至没有元素,会造成大量的空间被浪费
如果负载因子大一些比如是0.9,这样会导致扩容之前查找元素的效率非常低
loadfactory设置为0.75是经过多重计算检验得到的可靠值,可以最大程度的减少rehash的次数,避免过多的性能消耗
hashCode方法是Object中的方法,所有的类都可以对其进行使用,首先底层通过调用hashCode方法生成初始hash值h1,然后将h1无符号右移16位得到h2,之后将h1与h2进行按位异或(^)运算得到最终hash值h3,之后将h3与(length-1)进行按位与(&)运算得到hash表索引
其他可以计算出hash值的算法有
hashCode相等产生hash碰撞,hashCode相等会调用equals方法比较内容是否相等,内容如果相等则会进行覆盖,内容如果不等则会连接到链表后方,链表长度超过8且数组长度超过64,会转变成红黑树节点
只要两个元素的key计算的hash码值相同就会发生hash碰撞,jdk8之前使用链表解决哈希碰撞,jdk8之后使用链表+红黑树
解决哈希碰撞
以jdk8为例,简要流程如下:
HashMap在容量超过负载因子所定义的容量之后,就会扩容。java里的数组是无法自己扩容的,将HashMap的大小扩大为原来数组的两倍
我们来看jdk1.8扩容的源码
final Node<K,V>[] resize() {
//oldTab:引用扩容前的哈希表
Node<K,V>[] oldTab = table;
//oldCap:表示扩容前的table数组的长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//获得旧哈希表的扩容阈值
int oldThr = threshold;
//newCap:扩容之后table数组大小
//newThr:扩容之后下次触发扩容的条件
int newCap, newThr = 0;
//条件成立说明hashMap中的散列表已经初始化过了,是一次正常扩容
if (oldCap > 0) {
//判断旧的容量是否大于等于最大容量,如果是,则无法扩容,并且设置扩容条件为int最大值,
//这种情况属于非常少数的情况
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}//设置newCap新容量为oldCap旧容量的二倍(<<1),并且<最大容量,而且>=16,则新阈值等于旧阈值的两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//如果oldCap=0并且边界值大于0,说明散列表是null,但此时oldThr>0
//说明此时hashMap的创建是通过指定的构造方法创建的,新容量直接等于阈值
//1.new HashMap(intitCap,loadFactor)
//2.new HashMap(initCap)
//3.new HashMap(map)
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//这种情况下oldThr=0;oldCap=0,说明没经过初始化,创建hashMap
//的时候是通过new HashMap()的方式创建的
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//newThr为0时,通过newCap和loadFactor计算出一个newThr
if (newThr == 0) {
//容量*0.75
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//根据上面计算出的结果创建一个更长更大的数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//将table指向新创建的数组
table = newTab;
//本次扩容之前table不为null
if (oldTab != null) {
//对数组中的元素进行遍历
for (int j = 0; j < oldCap; ++j) {
//设置e为当前node节点
Node<K,V> e;
//当前桶位数据不为空,但不能知道里面是单个元素,还是链表或红黑树,
//e = oldTab[j],先用e记录下当前元素
if ((e = oldTab[j]) != null) {
//将老数组j桶位置为空,方便回收
oldTab[j] = null;
//如果e节点不存在下一个节点,说明e是单个元素,则直接放置在新数组的桶位
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//如果e是树节点,证明该节点处于红黑树中
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//e为链表节点,则对链表进行遍历
else { // preserve order
//低位链表:存放在扩容之后的数组的下标位置,与当前数组下标位置一致
//loHead:低位链表头节点
//loTail低位链表尾节点
Node<K,V> loHead = null, loTail = null;
//高位链表,存放扩容之后的数组的下标位置,=原索引+扩容之前数组容量
//hiHead:高位链表头节点
//hiTail:高位链表尾节点
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//oldCap为16:10000,与e.hsah做&运算可以得到高位为1还是0
//高位为0,放在低位链表
if ((e.hash & oldCap) == 0) {
if (loTail == null)
//loHead指向e
loHead = e;
else
loTail.next = e;
loTail = e;
}
//高位为1,放在高位链表
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//低位链表已成,将头节点loHead指向在原位
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//高位链表已成,将头节点指向新索引
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
扩容之后原位置的节点只有两种调整
扩容之后元素的散列设置的非常巧妙,节省了计算hash值的时间,我们来看一下具体的实现
当数组长度从16到32,其实只是多了一个bit位的运算,我们只需要在意那个多出来的bit为是0还是1,是0的话索引不变,是1的话索引变为当前索引值+扩容的长度,比如5变成5+16=21
这样的扩容方式不仅节省了重新计算hash的时间,而且保证了当前桶中的元素总数一定小于等于原来桶中的元素数量,避免了更严重的hash冲突,均匀的把之前冲突的节点分散到新的桶中去
一般用Integer、String这种不可变类当HashMap当key
8作为阈值作为HashMap的成员变量,在源码的注释中并没有说明阈值为什么是8
在HashMap中有这样一段注释说明,我们继续看
* Because TreeNodes are about twice the size of regular nodes, we
* use them only when bins contain enough nodes to warrant use
* (see TREEIFY_THRESHOLD). And when they become too small (due to
* removal or resizing) they are converted back to plain bins. In
* usages with well-distributed user hashCodes, tree bins are
* rarely used. Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)).
翻译
因为树节点的大小大约是普通节点的两倍,所以我们只在箱子包含足够的节点时才使用树节点(参见TREEIFY_THRESHOLD)。
当他们边的太小(由于删除或调整大小)时,就会被转换回普通的桶,在使用分布良好的hashcode时,很少使用树箱。
理想情况下,在随机哈希码下,箱子中节点的频率服从泊松分布
第一个值是:
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
树节点占用空间是普通Node的两倍,如果链表节点不够多却转换成红黑树,无疑会耗费大量的空间资源,并且在随机hash算法下的所有bin节点分布频率遵从泊松分布,链表长度达到8的概率只有0.00000006,几乎是不可能事件,所以8的计算是经过重重科学考量的
死循环
。JDK1.7中的HashMap使用头插法
插入元素,在多线程的环境下,扩容的时候有可能导致环形链表
的出现,形成死循环。因此JDK1.8使用尾插法
插入元素,在扩容时会保持链表元素原本的顺序
,不会出现环形链表的问题元素的丢失
。多线程同时执行put操作,如果计算出来的索引位置是相同的,那会造成前一个key被后一个key覆盖,从而导致元素的丢失。此问题在JDK1.7和JDK1.8中都存在threshold
而导致rehash,线程2此时执行get,有可能导致这个问题,此问题在JDK1.7和JDK1.8中都存在hashCode值与length-1
进行按位与运算,如果数组长度很小,比如16,这样的值和hashCode做异或实际上只有hashCode值的后4位在进行运算,hash值是一个随机值,而如果产生的hashCode值高位变化很大,而低位变化很小,那么有很大概率造成哈希冲突
,所以我们为了使元素更好的散列,将hash值的高位也利用起来\举个例子
如果我们不对hashCode进行按位异或,直接将hash和length-1进行按位与运算就有可能出现以下的情况
如果下一次生成的hashCode值高位起伏很大,而低位几乎没有变化时,高位无法参与运算
可以看到,两次计算出的hash相等,产生了hash冲突
所以无符号右移16位的目的是使高混乱度地区与地混乱度地区做一个中和,提高低位的随机性,减少哈希冲突
文章中出现的关于面试题的错误请在评论区指出,我再进行改正优化,如果文章对你有所帮助,请给博主一个免费的三连吧,感谢大家