一、pix2pixHD代码解析(train.py + test.py)
二、pix2pixHD代码解析(options设置)
三、pix2pixHD代码解析(dataset处理)
四、pix2pixHD代码解析(models搭建)
train.py
import time
import os
import numpy as np
import torch
from torch.autograd import Variable
from collections import OrderedDict
from subprocess import call
import fractions
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
opt = TrainOptions().parse() # 导入训练参数
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') # 设置:检查点路径、opt.name默认为label2city、iter里保存epoch和iters索引
if opt.continue_train: # 默认为Ture, 继续训练
try:
start_epoch, epoch_iter = np.loadtxt(iter_path, delimiter=',', dtype=int) # 加载当前得epoch、epoch_iter
except:
start_epoch, epoch_iter = 1, 0 # 若异常将二者设置为1, 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter)) # 打印是从epoch、iter处恢复的
else:
start_epoch, epoch_iter = 1, 0 # 如果continue_train=False, 那么也是直接从1, 0开始训练
def lcm(a, b): return abs(a * b)/fractions.gcd(a, b) if a and b else 0 # fractions.gcd()计算a和b的最大公约数:100和3的最大公约数为1,100*3/1=300,因此打印频率为300
opt.print_freq = lcm(opt.print_freq, opt.batchSize) # 打印频率和批次
if opt.debug: # 参数调试
opt.display_freq = 1 # 显示频率
opt.print_freq = 1 # 打印频率
opt.niter = 1 # iter的初始学习速率
opt.niter_decay = 0 # iter的线性衰减学习率为零
opt.max_dataset_size = 10
### 加载数据集
data_loader = CreateDataLoader(opt) # 加载数据集
dataset = data_loader.load_data() # 加载数据,调用的是data.custom_dataset_data_loader中的load_data()函数
dataset_size = len(data_loader) # 数据集长度
print('#training images = %d' % dataset_size) # 打印数据集有多少张照片,此处使用街景是2975张照片
model = create_model(opt) # 根据输入参数,创建模型
visualizer = Visualizer(opt) # 可视化的相关操作
if opt.fp16: # 关于加速运算相关的操作
from apex import amp
model, [optimizer_G, optimizer_D] = amp.initialize(model, [model.optimizer_G, model.optimizer_D], opt_level='O1')
model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
else:
optimizer_G, optimizer_D = model.module.optimizer_G, model.module.optimizer_D
total_steps = (start_epoch-1) * dataset_size + epoch_iter # 一共运行的步数
display_delta = total_steps % opt.display_freq # 求余运算,用于下方的if判断
print_delta = total_steps % opt.print_freq # 同上
save_delta = total_steps % opt.save_latest_freq # 同上
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch: # 如果epoch不等于读入的epoch,那么计算更新epoch_iter
epoch_iter = epoch_iter % dataset_size # 求余运算:当前步数 % 数据集的长度
for i, data in enumerate(dataset, start=epoch_iter): # 这里的epoch_iter是输入数据集list的索引值
if total_steps % opt.print_freq == print_delta: # 记录一个打印批次内的起始时间
iter_start_time = time.time()
total_steps += opt.batchSize # 记录总步数
epoch_iter += opt.batchSize # 记录当前步数
# whether to collect output images
save_fake = total_steps % opt.display_freq == display_delta # bool:是否保存假图片
############## Forward Pass ######################
# 调用class Pix2PixHDModel(BaseModel)中的forward()函数,输入整理好的四类数据集(本人只使用了label和imgs两类) ; 返回loss和fake_img
losses, generated = model(Variable(data['label']), Variable(data['inst']), Variable(data['image']), Variable(data['feat']), infer=save_fake)
# sum per device losses
### isinstance() 函数来判断一个对象是否是一个已知的类型,类似 type()。
# isinstance() 与 type() 区别:
# type() 不会认为子类是一种父类类型,不考虑继承关系。
# isinstance() 会认为子类是一种父类类型,考虑继承关系。
# 如果要判断两个类型是否相同推荐使用 isinstance()。
losses = [torch.mean(x) if not isinstance(x, int) else x for x in losses] # 如果x不是int类型那么求均值,是int就直接返回x.
loss_dict = dict(zip(model.module.loss_names, losses)) # 先使用zip()将元素一一对应起来以后,再使用dict创建一个字典
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 # 首先计算判别器损失:等于真假判别损失值的均值
loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat', 0) + loss_dict.get('G_VGG', 0) # 再计算生成器的损失值,由于本人不考虑feat和vgg,因此此处只有G_loss
############### Backward Pass ####################
# update generator weights
optimizer_G.zero_grad() # 先清空生成器优化器梯度为0
if opt.fp16: # fp16和AMP是混合精度加速的一些内容(英伟达自带的apex库)
with amp.scale_loss(loss_G, optimizer_G) as scaled_loss: scaled_loss.backward()
else:
loss_G.backward()
optimizer_G.step() # 优化器进行梯度计算
# update discriminator weights
optimizer_D.zero_grad() # 清空判别器优化器中的梯度
if opt.fp16:
with amp.scale_loss(loss_D, optimizer_D) as scaled_loss: scaled_loss.backward()
else:
loss_D.backward()
optimizer_D.step() # 逐步求导
############## Display results and errors ##########
### print out errors
if total_steps % opt.print_freq == print_delta:
errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()} # 这是一个 字典+for循环遍历 的简写方式
t = (time.time() - iter_start_time) / opt.print_freq
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
visualizer.plot_current_errors(errors, total_steps)
#call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"])
### display output images
if save_fake:
### OrderedDict()是一个有序字典:https://www.cnblogs.com/gide/p/6370082.html
# 很多人认为python中的字典是无序的,因为它是按照hash来存储的,
# 但是python中有个模块collections(英文,收集、集合),里面自带了一个子类
# OrderedDict,实现了对字典对象中元素的排序。
visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('synthesized_image', util.tensor2im(generated.data[0])),
('real_image', util.tensor2im(data['image'][0]))])
visualizer.display_current_results(visuals, epoch, total_steps) # 保存图片和更新网站
### save latest model
if total_steps % opt.save_latest_freq == save_delta:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) # 保存最近的模型
### Pytorch模型的保存与加载
# 例如我们创建了一个模型:model = MyVggNet()。
# 如果使用多GPU训练,我们需要使用这行代码:model = nn.DataParallel(model).cuda()
# 执行这个代码之后,model就不在是我们原来的模型,而是相当于在我们原来的模型外面加了一层支持GPU运行的外壳,
# 这时候真正的模型对象为:real_model = model.module,
model.module.save('latest') # 调用Pix2PixHDModel中的save()函数,保存模型。保存最近的网络模型:latest_net_G;latest_net_D
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
if epoch_iter >= dataset_size:
break
# end of epoch
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
### save model for this epoch
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.module.save('latest') # 保存最近的网络模型:latest_net_G;latest_net_D
model.module.save(epoch) # 保存网络模型,如:10_net_G;10_net_D
np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
### instead of only training the local enhancer, train the entire network after certain iterations
if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
model.module.update_fixed_params()
### linearly decay learning rate after certain iterations # 特定迭代后的线性衰减学习率
if epoch > opt.niter:
model.module.update_learning_rate()
test.py
import os
from collections import OrderedDict
from torch.autograd import Variable
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
import torch
opt = TestOptions().parse(save=False)
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle # 按批次加载,不打乱
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) # './results/'+'label2city'+'test_latest'
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) # 制作HTML文件用来查看test结果
# test
if not opt.engine and not opt.onnx:
model = create_model(opt)
if opt.data_type == 16:
model.half()
elif opt.data_type == 8:
model.type(torch.uint8)
if opt.verbose:
print(model) # 打印模型
else:
from run_engine import run_trt_engine, run_onnx
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
if opt.data_type == 16:
data['label'] = data['label'].half()
data['inst'] = data['inst'].half()
elif opt.data_type == 8:
data['label'] = data['label'].uint8()
data['inst'] = data['inst'].uint8()
if opt.export_onnx:
print ("Exporting to ONNX: ", opt.export_onnx)
assert opt.export_onnx.endswith("onnx"), "Export model file should end with .onnx"
torch.onnx.export(model, [data['label'], data['inst']],
opt.export_onnx, verbose=True)
exit(0)
minibatch = 1
if opt.engine:
generated = run_trt_engine(opt.engine, minibatch, [data['label'], data['inst']])
elif opt.onnx:
generated = run_onnx(opt.onnx, opt.data_type, minibatch, [data['label'], data['inst']])
else:
generated = model.inference(data['label'], data['inst'], data['image'])
visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('synthesized_image', util.tensor2im(generated.data[0]))])
img_path = data['path']
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
webpage.save()