PV-RCNN的推理实现和LOSS计算(三)

        前面已经完成了PV-RCNN网络的搭建和第一、第二阶段中关键点分割的label匹配,anchor与GT匹配、proposal与GT的target assignment,想了解的小伙伴可以我之前的博文

第一阶段:

PV-RCNN论文和逐代码解析(一)_NNNNNathan的博客-CSDN博客1、前言当前的点云3D检测主要分为两大类,第一类为grid-based的方法,第二类为point-based的方法。grid-based的方法将不规则的点云数据转换成规则的3D voxels (VoxelNet, SECOND , Fast PointRCNN, Part A^2 Net)或者转化成 2D的BEV特征图(PIXOR, HDNet,PointPillars),这种方法可以将不规则的数据转换后使用3D或者2D的CNN来高效的进行特征提取。...https://blog.csdn.net/qq_41366026/article/details/123349889?spm=1001.2014.3001.5501第二阶段:

PV-RCNN论文和逐代码解析(二)_NNNNNathan的博客-CSDN博客第一阶段:1、MeanVFE (voxel特征编码)2、VoxelBackBone8x(3D CNN 提取voxel特征)3、HeightCompression(高度方向Z轴堆叠)5、BaseBEVBackbone(SECOND中的RPN层)6、AnchorHeadSingle(anchor分类和回归头)4、VoxelSetAbstraction(VSA模块,对不同voxel特征层完成SA)第二阶段:7、PointHeadSimple Predicted Keypoint..https://blog.csdn.net/qq_41366026/article/details/123463717?spm=1001.2014.3001.5501这篇文章将根据前面生成的target assignment结果进行loss计算网络的推理以及PV-RCNN中的消融实验

1、Loss计算

        PV-RCNN是端到端训练的,一共需要计算三部分的损失:

1、anchor头的分类和回归损失 

2、Predicted Keypoint Weighting (PKW)分割损失

3、Refinement网络损失

总体的训练损失为三者相加,且三者权重相等

注:Loss计算的内容均在之前的博客中详细介绍过,这里再简单叙述一下;如果了解SECOND和PointRCNN的LOSS计算,不需要再看Loss计算部分。

1、anchor头的分类和回归损失

第一阶段建议框生成的损失如下:

        其中Lcls为每个acnhor的分类损失,采用focal loss进行计算(alpha和gamma与Retina一样,分别为0.25, 2),并采用SmoothL1函数优化anhcor box residual regression。

1.定位任务的回归残差定义如下:


                

        其中x^gt代表了标注框的x长度 ;x^a代表了先验框的长度信息,d^a表示先验框长度和宽度的对角线距离,定义为:

2.类别分类任务 


        对于每个先验框的物体类别分类,PV-RCNN使用了focal loss,来完成调节正负样本均衡,和难样本挖掘。公式定义如下:

        其中,aplha参数和gamma参数都和RetinaNet中的设置一样,分别为0.25和2。 

3.先验框方向分类


         由于在角度回归的时候,不可以完全区分两个两个方向完全相反的预测框,所以在实现的时候,作者加入了对先验框的方向分类,使用softmax函数预测方向的类别。

代码在:pcdet/models/dense_heads/anchor_head_template.py

    def get_cls_layer_loss(self):
        # (batch_size, 248, 216, 18) 网络类别预测
        cls_preds = self.forward_ret_dict['cls_preds']
        # (batch_size, 321408) 前景anchor类别
        box_cls_labels = self.forward_ret_dict['box_cls_labels']
        batch_size = int(cls_preds.shape[0])
        # [batch_szie, num_anchors]--> (batch_size, 321408)
        # 关心的anchor  选取出前景背景anchor, 在0.45到0.6之间的设置为仍然是-1,不参与loss计算
        cared = box_cls_labels >= 0
        # (batch_size, 321408) 前景anchor
        positives = box_cls_labels > 0
        # (batch_size, 321408) 背景anchor
        negatives = box_cls_labels == 0
        # 背景anchor赋予权重
        negative_cls_weights = negatives * 1.0
        # 将每个anchor分类的损失权重都设置为1
        cls_weights = (negative_cls_weights + 1.0 * positives).float()
        # 每个正样本anchor的回归损失权重,设置为1
        reg_weights = positives.float()
        # 如果只有一类
        if self.num_class == 1:
            # class agnostic
            box_cls_labels[positives] = 1

        # 正则化并计算权重     求出每个数据中有多少个正例,即shape=(batch, 1)
        pos_normalizer = positives.sum(1, keepdim=True).float()  # (4,1) 所有正例的和 eg:[[162.],[166.],[155.],[108.]]
        # 正则化回归损失-->(batch_size, 321408),最小值为1,根据论文中所述,用正样本数量来正则化回归损失
        reg_weights /= torch.clamp(pos_normalizer, min=1.0)
        # 正则化分类损失-->(batch_size, 321408),根据论文中所述,用正样本数量来正则化分类损失
        cls_weights /= torch.clamp(pos_normalizer, min=1.0)
        # care包含了背景和前景的anchor,但是这里只需要得到前景部分的类别即可不关注-1和0
        # cared.type_as(box_cls_labels) 将cared中为False的那部分不需要计算loss的anchor变成了0
        # 对应位置相乘后,所有背景和iou介于match_threshold和unmatch_threshold之间的anchor都设置为0
        cls_targets = box_cls_labels * cared.type_as(box_cls_labels)
        # 在最后一个维度扩展一次
        cls_targets = cls_targets.unsqueeze(dim=-1)

        cls_targets = cls_targets.squeeze(dim=-1)
        one_hot_targets = torch.zeros(
            *list(cls_targets.shape), self.num_class + 1, dtype=cls_preds.dtype, device=cls_targets.device
        )  # (batch_size, 321408, 4),这里的类别数+1是考虑背景

        # target.scatter(dim, index, src)
        # scatter_函数的一个典型应用就是在分类问题中,
        # 将目标标签转换为one-hot编码形式 https://blog.csdn.net/guofei_fly/article/details/104308528
        # 这里表示在最后一个维度,将cls_targets.unsqueeze(dim=-1)所索引的位置设置为1

        """
            dim=1: 表示按照列进行填充
            index=batch_data.label:表示把batch_data.label里面的元素值作为下标,
            去下标对应位置(这里的"对应位置"解释为列,如果dim=0,那就解释为行)进行填充
            src=1:表示填充的元素值为1
        """
        # (batch_size, 321408, 4)
        one_hot_targets.scatter_(-1, cls_targets.unsqueeze(dim=-1).long(), 1.0)
        # (batch_size, 248, 216, 18) --> (batch_size, 321408, 3)
        cls_preds = cls_preds.view(batch_size, -1, self.num_class)
        # (batch_size, 321408, 3) 不计算背景分类损失
        one_hot_targets = one_hot_targets[..., 1:]

        # 计算分类损失 # [N, M] # (batch_size, 321408, 3)
        cls_loss_src = self.cls_loss_func(cls_preds, one_hot_targets, weights=cls_weights)
        # 求和并除以batch数目
        cls_loss = cls_loss_src.sum() / batch_size
        # loss乘以分类权重 --> cls_weight=1.0
        cls_loss = cls_loss * self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['cls_weight']
        tb_dict = {
            'rpn_loss_cls': cls_loss.item()
        }
        return cls_loss, tb_dict

    @staticmethod
    def add_sin_difference(boxes1, boxes2, dim=6):
        # 针对角度添加sin损失,有效防止-pi和pi方向相反时损失过大
        assert dim != -1  # 角度=180°×弧度÷π   弧度=角度×π÷180°
        # (batch_size, 321408, 1)  torch.sin() - torch.cos() 的 input (Tensor) 都是弧度制数据,不是角度制数据。
        rad_pred_encoding = torch.sin(boxes1[..., dim:dim + 1]) * torch.cos(boxes2[..., dim:dim + 1])
        # (batch_size, 321408, 1)
        rad_tg_encoding = torch.cos(boxes1[..., dim:dim + 1]) * torch.sin(boxes2[..., dim:dim + 1])
        # (batch_size, 321408, 7) 将编码后的结果放回
        boxes1 = torch.cat([boxes1[..., :dim], rad_pred_encoding, boxes1[..., dim + 1:]], dim=-1)
        # (batch_size, 321408, 7) 将编码后的结果放回
        boxes2 = torch.cat([boxes2[..., :dim], rad_tg_encoding, boxes2[..., dim + 1:]], dim=-1)
        return boxes1, boxes2

    @staticmethod
    def get_direction_target(anchors, reg_targets, one_hot=True, dir_offset=0, num_bins=2):
        batch_size = reg_targets.shape[0]
        # (batch_size, 321408, 7)
        anchors = anchors.view(batch_size, -1, anchors.shape[-1])
        # (batch_size, 321408)在-pi到pi之间
        # 由于reg_targets[..., 6]是经过编码的旋转角度,如果要回到原始角度需要重新加回anchor的角度就可以
        rot_gt = reg_targets[..., 6] + anchors[..., 6]
        """
        offset_rot shape : (batch_size, 321408)
        rot_gt - dir_offset  由于在openpcdet中x向前,y向左,z向上,
        
        减去dir_offset(45度)的原因可以参考这个issue:
        https://github.com/open-mmlab/OpenPCDet/issues/818
        说的呢就是因为大部分目标都集中在0度和180度,270度和90度,
        这样就会导致网络在一些物体的预测上面不停的摇摆。所以为了解决这个问题,
        将方向分类的角度判断减去45度再进行判断,
        这里减掉45度之后,在预测推理的时候,同样预测的角度解码之后
        也要减去45度再进行之后测nms等操作
        
        common_utils.limit_period:
        将角度限制在0到2*pi之间 原数据的角度在-pi到pi之间
        """
        offset_rot = common_utils.limit_period(rot_gt - dir_offset, 0, 2 * np.pi)
        # (batch_size, 321408) 取值为0和1,num_bins=2
        dir_cls_targets = torch.floor(offset_rot / (2 * np.pi / num_bins)).long()
        # (batch_size, 321408)
        dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1)

        if one_hot:
            # (batch_size, 321408, 2)
            dir_targets = torch.zeros(*list(dir_cls_targets.shape), num_bins, dtype=anchors.dtype,
                                      device=dir_cls_targets.device)
            # one-hot编码,只存在两个方向:正向和反向 (batch_size, 321408, 2)
            dir_targets.scatter_(-1, dir_cls_targets.unsqueeze(dim=-1).long(), 1.0)
            dir_cls_targets = dir_targets
        return dir_cls_targets

    def get_box_reg_layer_loss(self):
        # (batch_size, 248, 216, 42) anchor_box的7个回归参数
        box_preds = self.forward_ret_dict['box_preds']
        # (batch_size, 248, 216, 12) anchor_box的方向预测
        box_dir_cls_preds = self.forward_ret_dict.get('dir_cls_preds', None)
        # (batch_size, 321408, 7) 每个anchor和GT编码的结果
        box_reg_targets = self.forward_ret_dict['box_reg_targets']
        # (batch_size, 321408) 得到每个box的类别
        box_cls_labels = self.forward_ret_dict['box_cls_labels']
        batch_size = int(box_preds.shape[0])
        # 获取所有anchor中属于前景anchor的mask  shape : (batch_size, 321408)
        positives = box_cls_labels > 0
        # 设置回归参数为1.    [True, False] * 1. = [1., 0.]
        reg_weights = positives.float()  # (4, 211200) 只保留标签>0的值
        # 同cls处理
        pos_normalizer = positives.sum(1,
                                       keepdim=True).float()  # (batch_size, 1) 所有正例的和 eg:[[162.],[166.],[155.],[108.]]

        reg_weights /= torch.clamp(pos_normalizer, min=1.0)  # (batch_size, 321408)

        if isinstance(self.anchors, list):
            if self.use_multihead:
                anchors = torch.cat(
                    [anchor.permute(3, 4, 0, 1, 2, 5).contiguous().view(-1, anchor.shape[-1]) for anchor in
                     self.anchors], dim=0)
            else:
                anchors = torch.cat(self.anchors, dim=-3)  # (1, 248, 216, 3, 2, 7)
        else:
            anchors = self.anchors
        # (1, 248*216, 7) --> (batch_size, 248*216, 7)
        anchors = anchors.view(1, -1, anchors.shape[-1]).repeat(batch_size, 1, 1)
        # (batch_size, 248*216, 7)
        box_preds = box_preds.view(batch_size, -1,
                                   box_preds.shape[-1] // self.num_anchors_per_location if not self.use_multihead else
                                   box_preds.shape[-1])
        # sin(a - b) = sinacosb-cosasinb
        # (batch_size, 321408, 7)    分别得到sinacosb和cosasinb
        box_preds_sin, reg_targets_sin = self.add_sin_difference(box_preds, box_reg_targets)
        loc_loss_src = self.reg_loss_func(box_preds_sin, reg_targets_sin, weights=reg_weights)
        loc_loss = loc_loss_src.sum() / batch_size

        loc_loss = loc_loss * self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['loc_weight']  # loc_weight = 2.0 损失乘以回归权重
        box_loss = loc_loss
        tb_dict = {
            # pytorch中的item()方法,返回张量中的元素值,与python中针对dict的item方法不同
            'rpn_loss_loc': loc_loss.item()
        }

        # 如果存在方向预测,则添加方向损失
        if box_dir_cls_preds is not None:
            # (batch_size, 321408, 2) 此处生成每个anchor的方向分类
            dir_targets = self.get_direction_target(
                anchors, box_reg_targets,
                dir_offset=self.model_cfg.DIR_OFFSET,  # 方向偏移量 0.78539 = π/4
                num_bins=self.model_cfg.NUM_DIR_BINS  # BINS的方向数 = 2
            )
            # 方向预测值 (batch_size, 321408, 2)
            dir_logits = box_dir_cls_preds.view(batch_size, -1, self.model_cfg.NUM_DIR_BINS)
            # 只要正样本的方向预测值 (batch_size, 321408)
            weights = positives.type_as(dir_logits)
            # (4, 211200) 除正例数量,使得每个样本的损失与样本中目标的数量无关
            weights /= torch.clamp(weights.sum(-1, keepdim=True), min=1.0)
            # 方向损失计算
            dir_loss = self.dir_loss_func(dir_logits, dir_targets, weights=weights)
            dir_loss = dir_loss.sum() / batch_size
            # 损失权重,dir_weight: 0.2
            dir_loss = dir_loss * self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['dir_weight']
            # 将方向损失加入box损失
            box_loss += dir_loss

            tb_dict['rpn_loss_dir'] = dir_loss.item()
        return box_loss, tb_dict

    def get_loss(self):
        # 计算classfiction layer的loss,tb_dict内容和cls_loss相同,形式不同,一个是torch.tensor一个是字典值
        cls_loss, tb_dict = self.get_cls_layer_loss()
        # 计算regression layer的loss
        box_loss, tb_dict_box = self.get_box_reg_layer_loss()
        # 在tb_dict中添加tb_dict_box,在python的字典中添加值,
        # 如果添加的也是字典,用update方法,如果是键值对则采用赋值的方式
        tb_dict.update(tb_dict_box)
        # rpn_loss是分类和回归的总损失
        rpn_loss = cls_loss + box_loss

        # 在tb_dict中添加rpn_loss,此时tb_dict中包含cls_loss,reg_loss和rpn_loss
        tb_dict['rpn_loss'] = rpn_loss.item()
        return rpn_loss, tb_dict

2、Predicted Keypoint Weighting (PKW)分割损失

         由于在一帧点云的关键点中属于前背景点的数量差异较大,作者在此处使用了Focal Loss:

        

 其中alpha和gamma都与RetinaNet中保持一致,分别为0.25、2。

注:在计算前背景点的分类loss时,对每个GT enlarge 0.2米后才包括的点,类别置为-1,不计算这些点的分类loss,来提高网络的泛化性,网络构建已经有提到过。
 

代码在:pcdet/models/dense_heads/point_head_template.py

    def get_cls_layer_loss(self, tb_dict=None):
        # 第一阶段点的GT类别
        point_cls_labels = self.forward_ret_dict['point_cls_labels'].view(-1)
        # 第一阶段点的预测类别
        point_cls_preds = self.forward_ret_dict['point_cls_preds'].view(-1, self.num_class)
        # 取出属于前景的点的mask,0为背景,1,2,3分别为前景,-1不关注
        positives = (point_cls_labels > 0)
        # 背景点分类权重置0
        negative_cls_weights = (point_cls_labels == 0) * 1.0
        # 前景点分类权重置0
        cls_weights = (negative_cls_weights + 1.0 * positives).float()
        # 使用前景点的个数来normalize,使得一批数据中每个前景点贡献的loss一样
        pos_normalizer = positives.sum(dim=0).float()
        # 正则化每个类别分类损失权重
        cls_weights /= torch.clamp(pos_normalizer, min=1.0)
        # 初始化分类的one-hot (batch * 16384, 4)
        one_hot_targets = point_cls_preds.new_zeros(*list(point_cls_labels.shape), self.num_class + 1)
        # 将目标标签转换为one-hot编码形式 https://blog.csdn.net/guofei_fly/article/details/104308528
        one_hot_targets.scatter_(-1, (point_cls_labels * (point_cls_labels >= 0).long()).unsqueeze(dim=-1).long(), 1.0)
        # 原来背景为[1, 0, 0, 0] 现在背景为[0, 0, 0]
        one_hot_targets = one_hot_targets[..., 1:]
        # 计算分类损失使用focal loss
        cls_loss_src = self.cls_loss_func(point_cls_preds, one_hot_targets, weights=cls_weights)
        # 各类别loss置求总数
        point_loss_cls = cls_loss_src.sum()
        # 分类损失权重
        loss_weights_dict = self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS
        # 分类损失乘以分类损失权重
        point_loss_cls = point_loss_cls * loss_weights_dict['point_cls_weight']

        if tb_dict is None:
            tb_dict = {}
        # 使用.item()将tensor转换成标量,抛弃Backward属性,可以优化显存,
        tb_dict.update({
            'point_loss_cls': point_loss_cls.item(),
            'point_pos_num': pos_normalizer.item()
        })

        return point_loss_cls, tb_dict

3、Refinement网络损失

proposal refinement网络的损失计算如下:

 为预测的box残差,为target编码的残差,编码方式和第一阶段相同。

3.1 quality-aware confidence prediction

        在PV-RCNN中作者将二阶段的置信度预测改成了quality-aware confidence预测的形式,计算公式如下:

        yk = min (1, max (0, 2IoUk − 0.5))

       在target assignment的时候,已经完成了该计算。

代码在:pcdet/models/roi_heads/roi_head_template.py

    def get_box_cls_layer_loss(self, forward_ret_dict):
        loss_cfgs = self.model_cfg.LOSS_CONFIG
        # 每个proposal的预测置信度 shape (batch *128, 1)
        rcnn_cls = forward_ret_dict['rcnn_cls']
        """
        Point RCNN
        rcnn_cls_labels
        每个proposal与之对应的GT,
        其中IOU大于0.6为前景,数值为1 
        0.45-0.6忽略不计算loss,数值为-1 
        0.45为背景,数值为0
        rcnn_cls_labels shape (batch *128 ,)
        """
        """
        PV-RCNN
        每个rcnn_cls_labels的数值不再是1或者0,
        改为了预测yk = min (1, max (0, 2IoUk − 0.5))
        quality-aware confidence prediction的方式
        """
        rcnn_cls_labels = forward_ret_dict['rcnn_cls_labels'].view(-1)
        if loss_cfgs.CLS_LOSS == 'BinaryCrossEntropy':
            # shape (batch *128, 1)--> (batch *128, )
            rcnn_cls_flat = rcnn_cls.view(-1)
            batch_loss_cls = F.binary_cross_entropy(torch.sigmoid(rcnn_cls_flat), rcnn_cls_labels.float(),
                                                    reduction='none')
            # 生成前背景mask
            cls_valid_mask = (rcnn_cls_labels >= 0).float()
            # 求loss值,并根据前背景总数进行正则化
            rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0)
        elif loss_cfgs.CLS_LOSS == 'CrossEntropy':
            batch_loss_cls = F.cross_entropy(rcnn_cls, rcnn_cls_labels, reduction='none', ignore_index=-1)
            cls_valid_mask = (rcnn_cls_labels >= 0).float()
            rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0)
        else:
            raise NotImplementedError

        # 乘以分类损失权重
        rcnn_loss_cls = rcnn_loss_cls * loss_cfgs.LOSS_WEIGHTS['rcnn_cls_weight']

        tb_dict = {'rcnn_loss_cls': rcnn_loss_cls.item()}
        return rcnn_loss_cls, tb_dict

3.2 box refinement loss

在 box refinement loss的计算过程中,

这里需要ROI于GT的3D IOU大于0.55的ROI计算回归loss。在OpenPCDet中,PointRCNN的第二阶段的回归loss由两部分组成;其中第一部分为前景ROI与GT的每个参数的SmoothL1 Loss,第二部分为前景ROI与GT的Corner Loss。

1 SmoothL1 Loss

        直接对前景roi的微调结果和GT计算Loss,这里的角度残差计算直接使用SmoothL1函数计算,原因是因为被认为属于前景的ROI其与GT的3D IOU大于0.55,所以两个box之间的角度偏差在正负45度以内

2 CORNER LOSS REGULARIZATION

        Corner Loss来源于F-PointNet,用于联合优化box的7个预测参数;在F-PointNet中指出,直接使用SmoothL1来回归box的参数,是直接对box的中心点,box的长宽高,box的朝向分别进行优化的。这样的优化可能会出现,box的中心点和长宽高已经可以十分准确的回归时,角度的预测却出现了偏差,导致3D IOU的降低的主要原因由角度预测错误引起。因此提出需要在(IOU metric)的度量方式下联合优化3D Box。为了解决这个问题,提出了一个正则化损失即Corner Loss,公式如下:

 Corner Loss是GTBox和预测Box的8个顶点的差值的和,因为一个box的顶点会被box的中心、box的长宽高、box的朝向所决定;因此 Corner Loss 可以作为这个多任务优化参数的正则项。

公式中,NS和NH分别代表了预测框和GT框,然后将box的坐标系都转换到以自身的中心坐标点上,P的i,j,k代表了box的不同类别的尺度,旋转角,和预定义的顶角顺序;在计算loss时,为了避免因为角度估计错误而导致的过大的正则化项,因此,会同时计算角度预测方向正确和完成相反的两种情况,并取其中最小值为该box的loss。δij为一个二维mask,用于选取需要计算loss的距离项。 
代码在:pcdet/models/roi_heads/roi_head_template.py

 def get_box_reg_layer_loss(self, forward_ret_dict):
        loss_cfgs = self.model_cfg.LOSS_CONFIG
        code_size = self.box_coder.code_size  # 7
        # (batch * 128, )#每帧点云中,有128个roi,只需要对iou大于0.55的roi计算loss
        reg_valid_mask = forward_ret_dict['reg_valid_mask'].view(
            -1)
        # 每个roi的gt_box  canonical坐标系下 (batch , 128, 7)
        gt_boxes3d_ct = forward_ret_dict['gt_of_rois'][..., 0:code_size]
        # 每个roi的gt_box 点云坐标系下 (batch * 128, 7)
        gt_of_rois_src = forward_ret_dict['gt_of_rois_src'][..., 0:code_size].view(-1, code_size)
        # 每个roi的调整参数 (rcnn_batch_size, C)  (batch * 128, 7)
        rcnn_reg = forward_ret_dict['rcnn_reg']
        # 每个roi的7个位置大小转向角参数 (batch , 128, 7)
        roi_boxes3d = forward_ret_dict['rois']
        rcnn_batch_size = gt_boxes3d_ct.view(-1, code_size).shape[0]  # 256
        # 获取前景mask
        fg_mask = (reg_valid_mask > 0)
        # 用于正则化
        fg_sum = fg_mask.long().sum().item()

        tb_dict = {}

        if loss_cfgs.REG_LOSS == 'smooth-l1':
            rois_anchor = roi_boxes3d.clone().detach().view(-1, code_size)
            rois_anchor[:, 0:3] = 0
            rois_anchor[:, 6] = 0
            """
            编码GT和roi之间的回归残差  
            由于在第二阶段选出的每个roi都和GT的 3D_IOU大于0.55,
            所有roi_box和GT_box的角度差距只会在正负45度以内;
            因此,此处的角度直接使用SmoothL1进行回归,
            不再使用residual-cos-based的方法编码角度
            """
            reg_targets = self.box_coder.encode_torch(
                gt_boxes3d_ct.view(rcnn_batch_size, code_size), rois_anchor
            )
            # 计算第二阶段的回归残差损失 [B, M, 7]
            rcnn_loss_reg = self.reg_loss_func(
                rcnn_reg.view(rcnn_batch_size, -1).unsqueeze(dim=0),
                reg_targets.unsqueeze(dim=0),
            )
            # 这里只计算3D iou大于0.55的roi_box的loss
            rcnn_loss_reg = (rcnn_loss_reg.view(rcnn_batch_size, -1) * fg_mask.unsqueeze(dim=-1).float()).sum() / max(
                fg_sum, 1)
            rcnn_loss_reg = rcnn_loss_reg * loss_cfgs.LOSS_WEIGHTS['rcnn_reg_weight']
            tb_dict['rcnn_loss_reg'] = rcnn_loss_reg.item()

            # 此处使用了F-PointNet中的corner loss来联合优化roi_box的 中心位置、角度、大小
            if loss_cfgs.CORNER_LOSS_REGULARIZATION and fg_sum > 0:
                # TODO: NEED to BE CHECK
                # 取出对前景ROI的回归结果(num_of_fg_roi, 7)
                fg_rcnn_reg = rcnn_reg.view(rcnn_batch_size, -1)[fg_mask]
                # 取出所有前景ROI(num_of_fg_roi, 7)
                fg_roi_boxes3d = roi_boxes3d.view(-1, code_size)[fg_mask]

                # 前景ROI(1, num_of_fg_roi, 7)
                fg_roi_boxes3d = fg_roi_boxes3d.view(1, -1, code_size)
                # 前景ROI(1, num_of_fg_roi, 7)
                batch_anchors = fg_roi_boxes3d.clone().detach()
                # 取出前景ROI的角度
                roi_ry = fg_roi_boxes3d[:, :, 6].view(-1)
                # 取出前景ROI的xyz
                roi_xyz = fg_roi_boxes3d[:, :, 0:3].view(-1, 3)
                # 将前景ROI的xyz置0,转化到以自身中心为原点(CCS坐标系),
                # 用于解码第二阶段得到的回归预测结果
                batch_anchors[:, :, 0:3] = 0
                # 根据第二阶段的微调结果来解码出最终的预测结果
                rcnn_boxes3d = self.box_coder.decode_torch(
                    fg_rcnn_reg.view(batch_anchors.shape[0], -1, code_size), batch_anchors
                ).view(-1, code_size)

                # 将canonical坐标系下的角度转回到点云坐标系中 (num_of_fg_roi, 7)
                rcnn_boxes3d = common_utils.rotate_points_along_z(
                    rcnn_boxes3d.unsqueeze(dim=1), roi_ry
                ).squeeze(dim=1)
                # 将canonical坐标系的中心坐标转回原点云雷达坐标系中
                rcnn_boxes3d[:, 0:3] += roi_xyz

                # corner loss  根据前景的ROI的refinement结果和对应的GTBox 计算corner_loss
                loss_corner = loss_utils.get_corner_loss_lidar(
                    rcnn_boxes3d[:, 0:7],  # 前景的ROI的refinement结果
                    gt_of_rois_src[fg_mask][:, 0:7]  # GTBox
                )
                # 求出所有前景ROI corner loss的均值
                loss_corner = loss_corner.mean()
                loss_corner = loss_corner * loss_cfgs.LOSS_WEIGHTS['rcnn_corner_weight']
                # 将两个回归损失求和
                rcnn_loss_reg += loss_corner
                tb_dict['rcnn_loss_corner'] = loss_corner.item()
        else:
            raise NotImplementedError

        return rcnn_loss_reg, tb_dict
get_corner_loss_lidar代码在pcdet/utils/loss_utils.py
def get_corner_loss_lidar(pred_bbox3d: torch.Tensor, gt_bbox3d: torch.Tensor):
    """
    Args:
        pred_bbox3d: (N, 7) float Tensor.
        gt_bbox3d: (N, 7) float Tensor.
    Returns:
        corner_loss: (N) float Tensor.
    """
    assert pred_bbox3d.shape[0] == gt_bbox3d.shape[0]
    # 将预测box的7个坐标值转换到其在3D空间中对应的8个顶点
    pred_box_corners = box_utils.boxes_to_corners_3d(pred_bbox3d)
    # 将GTBox的7个坐标值转换到其在3D空间中对应的8个顶点
    gt_box_corners = box_utils.boxes_to_corners_3d(gt_bbox3d)
    # 再计算GTBox和预测的box的方向完全相反的情况
    gt_bbox3d_flip = gt_bbox3d.clone()
    gt_bbox3d_flip[:, 6] += np.pi
    gt_box_corners_flip = box_utils.boxes_to_corners_3d(gt_bbox3d_flip)
    #  所有的box和GT取距离最小值,防止因为距离相反产生较大的loss(N, 8)
    corner_dist = torch.min(torch.norm(pred_box_corners - gt_box_corners, dim=2),
                            torch.norm(pred_box_corners - gt_box_corners_flip, dim=2))
    # (N, 8)
    corner_loss = WeightedSmoothL1Loss.smooth_l1_loss(corner_dist, beta=1.0)
    # 对每个box的8个顶点的差距求均值
    return corner_loss.mean(dim=1)
boxes_to_corners_3d在pcdet/utils/box_utils.py
def boxes_to_corners_3d(boxes3d):
    """
        7 -------- 4
       /|         /|
      6 -------- 5 .
      | |        | |
      . 3 -------- 0
      |/         |/
      2 -------- 1
    Args:
        boxes3d:  (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center
    Returns:
    """
    boxes3d, is_numpy = common_utils.check_numpy_to_torch(boxes3d)
    # shape (8, 3)
    template = boxes3d.new_tensor((
        [1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1],
        [1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1],
    )) / 2
 
    corners3d = boxes3d[:, None, 3:6].repeat(1, 8, 1) * template[None, :, :]
    corners3d = common_utils.rotate_points_along_z(corners3d.view(-1, 8, 3), boxes3d[:, 6]).view(-1, 8, 3)
    corners3d += boxes3d[:, None, 0:3]
 
    return corners3d.numpy() if is_numpy else corners3d

至此,PV-RCNN的所有loss计算就完成了,下面看看推理的实现。

2、网络推理实现

2.1 网络预测结果生成

    看回PV-RCNN head第二阶段中roi精调的代码,在预测阶段,需要根据前面提出的roi和第二阶段的精调结果生成最终的预测结果;分别是:

batch_cls_preds (100,1) 每个ROI Box的置信度得分
batch_box_preds (100,7) 每个ROI Box的7个参数 (x,y,z,l,w,h,theta)

注:在推理阶段,第一阶段的anchor得到的ROI的个数是100个且NMS阈值是0.7。

代码在:pcdet/models/roi_heads/pvrcnn_head.py

    def forward(self, batch_dict):
        """
        :param input_data: input dict
        :return:
        """
        # 根据所有的预测结果生成proposal, rois: (B, num_rois, 7+C)
        # roi_scores: (B, num_rois) roi_labels: (B, num_rois)
        targets_dict = self.proposal_layer(
            batch_dict, nms_config=self.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST']
        )
        # 训练模式下, 需要对选取的roi进行target assignment,并将ROI对应的GTBox转换到CCS坐标系下
        """
        xxxxxxxx
        """
            
        # (B, 1 or 2)     rcnn_cls proposal的置信度  (batch * 128,  1)
        rcnn_cls = self.cls_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1)
        # (B, C)      rcnn_reg  proposal的box refinement结果 (batch * 128,  7)
        rcnn_reg = self.reg_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1)
        # 推理模式下,根据微调生成预测结果
        if not self.training:
            batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
                batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg
            )
            batch_dict['batch_cls_preds'] = batch_cls_preds
            batch_dict['batch_box_preds'] = batch_box_preds
            batch_dict['cls_preds_normalized'] = False
        else:
            targets_dict['rcnn_cls'] = rcnn_cls
            targets_dict['rcnn_reg'] = rcnn_reg

            self.forward_ret_dict = targets_dict

        return batch_dict

生成最终预测box的函数为generate_predicted_boxes

代码在:pcdet/models/roi_heads/roi_head_template.py

    def generate_predicted_boxes(self, batch_size, rois, cls_preds, box_preds):
        """
        Args:
            batch_size:
            rois: (B, N, 7)
            cls_preds: (BN, num_class)
            box_preds: (BN, code_size)

        Returns:

        """
        # 回归编码的7个参数 x, y, z, l, w, h, θ
        code_size = self.box_coder.code_size
        # 对ROI的置信度分数预测batch_cls_preds : (B, num_of_roi, num_class or 1)
        batch_cls_preds = cls_preds.view(batch_size, -1, cls_preds.shape[-1])
        # 对ROI Box的参数调整 batch_box_preds : (B, num_of_roi, 7)
        batch_box_preds = box_preds.view(batch_size, -1, code_size)
        # 取出每个roi的旋转角度,并拿出每个roi的xyz坐标,
        # local_roi用于生成每个点自己的bbox,
        # 因为之前的预测都是基于CCS坐标系下的,所以生成后需要将原xyz坐标上上去
        roi_ry = rois[:, :, 6].view(-1)
        roi_xyz = rois[:, :, 0:3].view(-1, 3)
        local_rois = rois.clone().detach()
        local_rois[:, :, 0:3] = 0
        # 得到CCS坐标系下每个ROI Box的经过refinement后的Box结果
        batch_box_preds = self.box_coder.decode_torch(batch_box_preds, local_rois).view(-1, code_size)

        # 完成CCS到点云坐标系的转换
        # 将canonical坐标系下的box角度转回到点云坐标系中
        batch_box_preds = common_utils.rotate_points_along_z(
            batch_box_preds.unsqueeze(dim=1), roi_ry
        ).squeeze(dim=1)
        # 将canonical坐标系下的box的中心偏移估计加上roi的中心,转回到点云坐标系中
        batch_box_preds[:, 0:3] += roi_xyz
        batch_box_preds = batch_box_preds.view(batch_size, -1, code_size)
        # batch_cls_preds 每个ROI Box的置信度得分
        # batch_box_preds 每个ROI Box的7个参数 (x,y,z,l,w,h,theta)
        return batch_cls_preds, batch_box_preds

box_decode的函数代码在:pcdet/utils/box_coder_utils.py

注:这里没有方向分类,因为角度已经在正负45度以内的,原因在训练的target assignment中已经说过。

class ResidualCoder(object):
    def __init__(self, code_size=7, encode_angle_by_sincos=False, **kwargs):
        """
        loss中anchor和gt的编码与解码
        7个参数的编码的方式为
            ∆x = (x^gt − xa^da)/d^a , ∆y = (y^gt − ya^da)/d^a , ∆z = (z^gt − za^ha)/h^a
            ∆w = log (w^gt / w^a) ∆l = log (l^gt / l^a) , ∆h = log (h^gt / h^a)
            ∆θ = sin(θ^gt - θ^a)
        """
        super().__init__()
        self.code_size = code_size
        self.encode_angle_by_sincos = encode_angle_by_sincos
        if self.encode_angle_by_sincos:
            self.code_size += 1

    def encode_torch(self, boxes, anchors):
        """
        Args:
            boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
            anchors: (N, 7 + C) [x, y, z, dx, dy, dz, heading or *[cos, sin], ...]

        Returns:

        """
        # 截断anchors的[dx,dy,dz],每个anchor_box的l, w, h数值如果小于1e-5则为1e-5
        anchors[:, 3:6] = torch.clamp_min(anchors[:, 3:6], min=1e-5)
        # 截断boxes的[dx,dy,dz] 每个GT_box的l, w, h数值如果小于1e-5则为1e-5
        boxes[:, 3:6] = torch.clamp_min(boxes[:, 3:6], min=1e-5)
        # If split_size_or_sections is an integer type, then tensor will be split into equally sized chunks (if possible).
        # Last chunk will be smaller if the tensor size along the given dimension dim is not divisible by split_size.

        # 这里指torch.split的第二个参数   torch.split(tensor, split_size, dim=)  split_size是切分后每块的大小,不是切分为多少块!,多余的参数使用*cags接收
        xa, ya, za, dxa, dya, dza, ra, *cas = torch.split(anchors, 1, dim=-1)
        xg, yg, zg, dxg, dyg, dzg, rg, *cgs = torch.split(boxes, 1, dim=-1)
        # 计算anchor对角线长度
        diagonal = torch.sqrt(dxa ** 2 + dya ** 2)

        # 计算loss的公式,Δx,Δy,Δz,Δw,Δl,Δh,Δθ
        # ∆x = (x^gt − xa^da)/diagonal
        xt = (xg - xa) / diagonal
        # ∆y = (y^gt − ya^da)/diagonal
        yt = (yg - ya) / diagonal
        # ∆z = (z^gt − za^ha)/h^a
        zt = (zg - za) / dza
        # ∆l = log(l ^ gt / l ^ a)
        dxt = torch.log(dxg / dxa)
        # ∆w = log(w ^ gt / w ^ a)
        dyt = torch.log(dyg / dya)
        # ∆h = log(h ^ gt / h ^ a)
        dzt = torch.log(dzg / dza)
        # False
        if self.encode_angle_by_sincos:
            rt_cos = torch.cos(rg) - torch.cos(ra)
            rt_sin = torch.sin(rg) - torch.sin(ra)
            rts = [rt_cos, rt_sin]
        else:
            rts = [rg - ra]  # Δθ

        cts = [g - a for g, a in zip(cgs, cas)]
        return torch.cat([xt, yt, zt, dxt, dyt, dzt, *rts, *cts], dim=-1)

    def decode_torch(self, box_encodings, anchors):
        """
        Args:
            box_encodings: (B, N, 7 + C) or (N, 7 + C) [x, y, z, dx, dy, dz, heading or *[cos, sin], ...]
            anchors: (B, N, 7 + C) or (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]

        Returns:

        """
        # 这里指torch.split的第二个参数   torch.split(tensor, split_size, dim=)
        # split_size是切分后每块的大小,不是切分为多少块!,多余的参数使用*cags接收
        xa, ya, za, dxa, dya, dza, ra, *cas = torch.split(anchors, 1, dim=-1)
        # 分割编码后的box PointPillar为False
        if not self.encode_angle_by_sincos:
            xt, yt, zt, dxt, dyt, dzt, rt, *cts = torch.split(box_encodings, 1, dim=-1)
        else:
            xt, yt, zt, dxt, dyt, dzt, cost, sint, *cts = torch.split(box_encodings, 1, dim=-1)
        # 计算anchor对角线长度
        diagonal = torch.sqrt(dxa ** 2 + dya ** 2)  # (B, N, 1)-->(1, 321408, 1)
        # loss计算中anchor与GT编码的运算:g表示gt,a表示anchor
        # ∆x = (x^gt − xa^da)/diagonal --> x^gt = ∆x * diagonal + x^da
        # 下同
        xg = xt * diagonal + xa
        yg = yt * diagonal + ya
        zg = zt * dza + za
        # ∆l = log(l^gt / l^a)的逆运算 --> l^gt = exp(∆l) * l^a
        # 下同
        dxg = torch.exp(dxt) * dxa
        dyg = torch.exp(dyt) * dya
        dzg = torch.exp(dzt) * dza

        # 如果角度是cos和sin编码,采用新的解码方式 PointPillar为False
        if self.encode_angle_by_sincos:
            rg_cos = cost + torch.cos(ra)
            rg_sin = sint + torch.sin(ra)
            rg = torch.atan2(rg_sin, rg_cos)
        else:
            # rts = [rg - ra] 角度的逆运算
            rg = rt + ra
        # PointPillar无此项
        cgs = [t + a for t, a in zip(cts, cas)]
        return torch.cat([xg, yg, zg, dxg, dyg, dzg, rg, *cgs], dim=-1)

最终得到预测结果:

batch_cls_preds (1, 100)每个ROI Box的置信度得分

 batch_box_preds (1, 100, 7)每个ROI Box的7个参数 (x,y,z,l,w,h,theta)

2.2 后处理

        后处理完成了对最终100个ROI预测结果的NMS操作;同时需要注意的是,每个box的最终分类结果是由第一阶段得出,第二阶段的分类结果得到的是IOU预测;此处实现与FRCNN不同(Frcnn第一阶段完成前背景选取,第二阶段进行分类),需注意。

后处理中的NMS阈值是0.01,不考虑任何overlap在3D世界中。

代码在:pcdet/models/detectors/detector3d_template.py

    def post_processing(self, batch_dict):
        """
        Args:
            batch_dict:
                batch_size:
                batch_cls_preds: (B, num_boxes, num_classes | 1) or (N1+N2+..., num_classes | 1)
                                or [(B, num_boxes, num_class1), (B, num_boxes, num_class2) ...]
                multihead_label_mapping: [(num_class1), (num_class2), ...]
                batch_box_preds: (B, num_boxes, 7+C) or (N1+N2+..., 7+C)
                cls_preds_normalized: indicate whether batch_cls_preds is normalized
                batch_index: optional (N1+N2+...)
                has_class_labels: True/False
                roi_labels: (B, num_rois)  1 .. num_classes
                batch_pred_labels: (B, num_boxes, 1)
        Returns:
        """
        # post_process_cfg后处理参数,包含了nms类型、阈值、使用的设备、nms后最多保留的结果和输出的置信度等设置
        post_process_cfg = self.model_cfg.POST_PROCESSING
        # 推理默认为1
        batch_size = batch_dict['batch_size']
        # 保留计算recall的字典
        recall_dict = {}
        # 预测结果存放在此
        pred_dicts = []
        # 逐帧进行处理
        for index in range(batch_size):
            if batch_dict.get('batch_index', None) is not None:
                assert batch_dict['batch_box_preds'].shape.__len__() == 2
                batch_mask = (batch_dict['batch_index'] == index)
            else:
                assert batch_dict['batch_box_preds'].shape.__len__() == 3
                # 得到当前处理的是第几帧
                batch_mask = index
            # box_preds shape (所有anchor的数量, 7)
            box_preds = batch_dict['batch_box_preds'][batch_mask]
            # 复制后,用于recall计算
            src_box_preds = box_preds
 
            if not isinstance(batch_dict['batch_cls_preds'], list):
                # (所有anchor的数量, 3)
                cls_preds = batch_dict['batch_cls_preds'][batch_mask]
                # 同上
                src_cls_preds = cls_preds
                assert cls_preds.shape[1] in [1, self.num_class]
 
                if not batch_dict['cls_preds_normalized']:
                    # 损失函数计算使用的BCE,所以这里使用sigmoid激活函数得到类别概率
                    cls_preds = torch.sigmoid(cls_preds)
            else:
                cls_preds = [x[batch_mask] for x in batch_dict['batch_cls_preds']]
                src_cls_preds = cls_preds
                if not batch_dict['cls_preds_normalized']:
                    cls_preds = [torch.sigmoid(x) for x in cls_preds]
 
            # 是否使用多类别的NMS计算,否,不考虑不同类别的物体会在3D空间中重叠
            if post_process_cfg.NMS_CONFIG.MULTI_CLASSES_NMS:
                if not isinstance(cls_preds, list):
                    cls_preds = [cls_preds]
                    multihead_label_mapping = [torch.arange(1, self.num_class, device=cls_preds[0].device)]
                else:
                    multihead_label_mapping = batch_dict['multihead_label_mapping']
 
                cur_start_idx = 0
                pred_scores, pred_labels, pred_boxes = [], [], []
                for cur_cls_preds, cur_label_mapping in zip(cls_preds, multihead_label_mapping):
                    assert cur_cls_preds.shape[1] == len(cur_label_mapping)
                    cur_box_preds = box_preds[cur_start_idx: cur_start_idx + cur_cls_preds.shape[0]]
                    cur_pred_scores, cur_pred_labels, cur_pred_boxes = model_nms_utils.multi_classes_nms(
                        cls_scores=cur_cls_preds, box_preds=cur_box_preds,
                        nms_config=post_process_cfg.NMS_CONFIG,
                        score_thresh=post_process_cfg.SCORE_THRESH
                    )
                    cur_pred_labels = cur_label_mapping[cur_pred_labels]
                    pred_scores.append(cur_pred_scores)
                    pred_labels.append(cur_pred_labels)
                    pred_boxes.append(cur_pred_boxes)
                    cur_start_idx += cur_cls_preds.shape[0]
 
                final_scores = torch.cat(pred_scores, dim=0)
                final_labels = torch.cat(pred_labels, dim=0)
                final_boxes = torch.cat(pred_boxes, dim=0)
            else:
                # 得到类别预测的最大概率,和对应的索引值
                cls_preds, label_preds = torch.max(cls_preds, dim=-1)
                if batch_dict.get('has_class_labels', False):
                    # 如果有roi_labels在里面字典里面,
                    # 使用第一阶段预测的label为改预测结果的分类类别
                    label_key = 'roi_labels' if 'roi_labels' in batch_dict else 'batch_pred_labels'
                    label_preds = batch_dict[label_key][index]
                else:
                    # 类别预测值加1
                    label_preds = label_preds + 1
 
                # 无类别NMS操作
                # selected : 返回了被留下来的anchor索引
                # selected_scores : 返回了被留下来的anchor的置信度分数
                selected, selected_scores = model_nms_utils.class_agnostic_nms(
                    # 每个anchor的类别预测概率和anchor回归参数
                    box_scores=cls_preds, box_preds=box_preds,
                    nms_config=post_process_cfg.NMS_CONFIG,
                    score_thresh=post_process_cfg.SCORE_THRESH
                )
                # 无此项
                if post_process_cfg.OUTPUT_RAW_SCORE:
                    max_cls_preds, _ = torch.max(src_cls_preds, dim=-1)
                    selected_scores = max_cls_preds[selected]
 
                # 得到最终类别预测的分数
                final_scores = selected_scores
                # 根据selected得到最终类别预测的结果
                final_labels = label_preds[selected]
                # 根据selected得到最终box回归的结果
                final_boxes = box_preds[selected]
 
            # 如果没有GT的标签在batch_dict中,就不会计算recall值
            recall_dict = self.generate_recall_record(
                box_preds=final_boxes if 'rois' not in batch_dict else src_box_preds,
                recall_dict=recall_dict, batch_index=index, data_dict=batch_dict,
                thresh_list=post_process_cfg.RECALL_THRESH_LIST
            )
            # 生成最终预测的结果字典
            record_dict = {
                'pred_boxes': final_boxes,
                'pred_scores': final_scores,
                'pred_labels': final_labels
            }
            pred_dicts.append(record_dict)
 
        return pred_dicts, recall_dict

其中 无类别的NMS操作在:pcdet/models/model_utils/model_nms_utils.py

def class_agnostic_nms(box_scores, box_preds, nms_config, score_thresh=None):
    # 1.首先根据置信度阈值过滤掉部过滤掉大部分置信度低的box,加速后面的nms操作
    src_box_scores = box_scores
    if score_thresh is not None:
        # 得到类别预测概率大于score_thresh的mask
        scores_mask = (box_scores >= score_thresh)
        # 根据mask得到哪些anchor的类别预测大于score_thresh-->anchor类别
        box_scores = box_scores[scores_mask]
        # 根据mask得到哪些anchor的类别预测大于score_thresh-->anchor回归的7个参数
        box_preds = box_preds[scores_mask]
 
    # 初始化空列表,用来存放经过nms后保留下来的anchor
    selected = []
    # 如果有anchor的类别预测大于score_thresh的话才进行nms,否则返回空
    if box_scores.shape[0] > 0:
        # 这里只保留最大的K个anchor置信度来进行nms操作,
        # k取min(nms_config.NMS_PRE_MAXSIZE, box_scores.shape[0])的最小值
        box_scores_nms, indices = torch.topk(box_scores, k=min(nms_config.NMS_PRE_MAXSIZE, box_scores.shape[0]))
 
        # box_scores_nms只是得到了类别的更新结果;
        # 此处更新box的预测结果 根据tokK重新选取并从大到小排序的结果 更新boxes的预测
        boxes_for_nms = box_preds[indices]
        # 调用iou3d_nms_utils的nms_gpu函数进行nms,
        # 返回的是被保留下的box的索引,selected_scores = None
        # 根据返回索引找出box索引值
        keep_idx, selected_scores = getattr(iou3d_nms_utils, nms_config.NMS_TYPE)(
            boxes_for_nms[:, 0:7], box_scores_nms, nms_config.NMS_THRESH, **nms_config
        )
        selected = indices[keep_idx[:nms_config.NMS_POST_MAXSIZE]]
 
    if score_thresh is not None:
        # 如果存在置信度阈值,scores_mask是box_scores在src_box_scores中的索引,即原始索引
        original_idxs = scores_mask.nonzero().view(-1)
        # selected表示的box_scores的选择索引,经过这次索引,
        # selected表示的是src_box_scores被选择的box索引
        selected = original_idxs[selected]
 
    return selected, src_box_scores[selected]

最终得到每个预测Box的类别、置信度得分、box的7个参数。

3、PV-RCNN结果

PV-RCNN原论文结果:

PV-RCNN的推理实现和LOSS计算(三)_第1张图片

PV-RCNN在KITTI数据集测试结果(结果仅显示在kitti验证集moderate精度)

4、消融实验

4.1 voxel-to-keypoint场景编码的效果

PV-RCNN的推理实现和LOSS计算(三)_第2张图片

 

4.2 VSA中使用来自不同层的特征的影响

PV-RCNN的推理实现和LOSS计算(三)_第3张图片

 

4.3 PKW模块的效果

PV-RCNN的推理实现和LOSS计算(三)_第4张图片

 

4.4 ROI-grid Pooling的影响

待续

你可能感兴趣的:(点云检测,自动驾驶,目标检测,计算机视觉,深度学习,人工智能)