python numpy库 array_Python 学习笔记之 Numpy 库——数组基础

1. 初识数组

import numpy as np

a = np.arange(15)

a = a.reshape(3, 5)

print(a.ndim, a.shape, a.dtype, a.size, a.itemsize)

# 2 (3, 5) int64 15 8

ndim,数组的维度数,二维数组就是 2

shape,数组在各个维度上的长度,用元组表示

dtype,数组中元素的数据类型,比如 int32, float64 等

size,数组中所有元素的总数

itemsize,数组中每个元素所占的字节数

2. 创建数组

a = np.array([[1, 2, 3], [4, 5, 6]])

a = np.ones((3, 4))

a = np.zeros((3, 4), dtype=np.float32)

a = np.linspace(0, 2, 9) # 9 numbers from 0 to 2

np.linspace(start, stop, num=50) 产生一个区间在[start, stop],长度为 num 的一维数组

3. 基本运算

a = np.array([[1, 2, 3], [4, 5, 6]]) # (2, 3)

b = np.array([[1, 0, 1], [0, 1, 1], [1, 1, 0]]) # (3, 3)

c = np.dot(a, b) # 矩阵相乘

d = a @ b # 矩阵相乘

e = np.dot(a[0], [0]) # 向量内积

f = a * a # 元素相乘

g = np.sum(a)

h = np.mean(a, axis=0)

np.sum 等函数若不指定 axis,则把数组所有元素当成列表来处理,axis = 0,表示只在第一个维度上进行求和,以此类推。

4. 维度操作

a = np.zeros((2, 3))

b = np.zeros((3, 3))

np.vstack((a, b)).shape # (5, 3)

np.vstack, 沿着垂直方向或者行的方向将数组堆起来

a = np.zeros((2, 1, 5))

b = np.zeros((2, 2, 5))

np.hstack((a, b)).shape # (2, 3, 5)

np.hstack, 沿着水平方向或者列的方向将数组堆起来

a = np.zeros((2, 5, 1))

b = np.zeros((2, 5, 5))

np.concatenate((a, b), axis=2).shape # (2, 5, 6)

np.concatenate, 沿着某一维度将数组堆起来

a = np.zeros((3, ))

b = np.zeros((3, ))

np.stack((a, b), axis=0).shape # (2, 3)

np.stack((a, b), axis=1).shape # (3, 2)

np.stack, 将数组沿着新的维度堆起来

5. 随机数

a = np.random.rand(3, 2) # (3, 2)

np.random.rand, 返回一个 [0, 1) 之间的随机分布

a = np.random.random((2, 3)) # (2, 3)

np.random.random, 返回一个 [0, 1) 之间的随机分布

a = np.random.randn(3, 2) # (3, 2)

a = sigma * np.random.randn(...) + mu

np.random.randn, 返回一个均值为 0 方差为 1 的标准正态分布,通过 mu 和 sigma 可以任意改变均值和方差

a = np.random.randint(1, 5, (3, 2)) # (3, 2)

np.random.randint(low, high=None, size=None), 返回一个 [0, low) 或者 [low, high) 之间的随机整数

np.random.choice(np.arange(5, 10), 3, replace=False)

np.random.choice(5, (3,2))

np.random.choice(a, size=None, replace=True, p=None), 返回 a 中元素或者 np.arange(a) 范围内的随机整数,replace=True 默认可以有重复元素

np.random.seed(1)

a = np.random.rand(3, 2)

np.random.seed(1)

b = np.random.rand(3, 2) # a == b

a = np.array([1, 2, 3, 4, 5])

np.random.shuffle(a)

np.random.seed 通过设置随机数种子的值可以保证两次产生的随机数相同

np.random.shuffle() 沿着第一维随机打乱数组

获取更多精彩,请关注「seniusen」!

python numpy库 array_Python 学习笔记之 Numpy 库——数组基础_第1张图片

你可能感兴趣的:(python,numpy库,array)