虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN

艾薇巴迪大家好,虎年春节就要到了,首先在此祝大家新春快乐、虎年大吉。

用Python与人工智能一起写春联

  • 前言
  • 1、分析
  • 2、配置对联项目
    • 2.1、配置下载
    • 2.2、数据预处理
    • 2.3、训练
    • 2.4、运行
  • 3、训练样例
  • 4、与AI一起写虎年春联
  • 5、资源下载

前言

众所周知,每到春节,家家户户都会在门口精心贴上漂亮的春联,辞旧迎新、辟邪除灾、迎祥纳福,增加喜庆的节日气氛。
虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN_第1张图片

虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN_第2张图片

春联,是我们中国特有的文学形式,是华夏民族过年的重要习俗,春联讲究的是对仗工整、简洁精巧。古往今来,有很多很多千古绝对妙对,无奈我是文化荒漠不会写对联,不如找一个人工智能(障)来帮我一起写写对联吧!

1、分析

要让人工智能会对对联,首先要给他准备大量的对联数据给他学,让他先看看别人的对联是怎么对的。
为他分开准备上联和下联,下载数据集
虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN_第3张图片
一般来讲,对对联就是给定一句话生成另一句话,这是序列生成问题,本项目根据上下联字数相等的特点将其转化为序列标注问题,即用下联去标注上联。
**模型使用了Transformer+BiLSTM+ATTN+CNN,**模型核心代码为:

class Transformer(nn.Module):
    def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, n_head: int, ff_dim: int, embed_drop: float, hidden_drop: float):
        super().__init__()
        self.tok_embedding = nn.Embedding(vocab_size, embed_dim)
        self.pos_embedding = nn.Embedding(max_seq_len, embed_dim)
        layer = nn.TransformerEncoderLayer(
            d_model=hidden_dim, nhead=n_head, dim_feedforward=ff_dim, dropout=hidden_drop)
        self.encoder = nn.TransformerEncoder(layer, num_layers=n_layer)
        self.embed_dropout = nn.Dropout(embed_drop)
        self.linear1 = nn.Linear(embed_dim, hidden_dim)
        self.linear2 = nn.Linear(hidden_dim, embed_dim)

    def encode(self, x, mask):
        x = x.transpose(0, 1)
        x = self.encoder(x, src_key_padding_mask=mask)
        x = x.transpose(0, 1)
        return x

    def forward(self, x, *args):
        # (batch_size, max_seq_len, embed_dim)
        mask = args[0] if len(args) > 0 else None
        tok_emb = self.tok_embedding(x)
        max_seq_len = x.shape[-1]
        pos_emb = self.pos_embedding(torch.arange(max_seq_len).to(x.device))
        x = tok_emb + pos_emb.unsqueeze(0)
        x = self.embed_dropout(x)
        x = self.linear1(x)
        x = self.encode(x, mask)
        x = self.linear2(x)
        probs = torch.matmul(x, self.tok_embedding.weight.t())
        return probs


class BiLSTM(nn.Module):
    def __init__(self, vocab_size: int, embed_dim: int, hidden_dim: int, n_layer: int, embed_drop: float, rnn_drop: float):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim)
        self.bilstm = nn.LSTM(embed_dim, hidden_dim // 2, num_layers=n_layer,
                              dropout=rnn_drop if n_layer > 1 else 0, batch_first=True, bidirectional=True)
        self.embed_dropout = nn.Dropout(embed_drop)
        self.linear = nn.Linear(hidden_dim, embed_dim)

    def encode(self, x):
        x = self.embedding(x)
        x = self.embed_dropout(x)
        x, _ = self.bilstm(x)
        return x

    def predict(self, x):
        x = self.linear(x)
        probs = torch.matmul(x, self.embedding.weight.t())
        return probs

    def forward(self, x, *args):
        x = self.encode(x)
        return self.predict(x)


class BiLSTMAttn(BiLSTM):
    def __init__(self, vocab_size: int, embed_dim: int, hidden_dim: int, n_layer: int, embed_drop: float, rnn_drop: float, n_head: int):
        super().__init__(vocab_size, embed_dim, hidden_dim, n_layer, embed_drop, rnn_drop)
        self.attn = nn.MultiheadAttention(hidden_dim, n_head)

    def forward(self, x, *args):
        mask = args[0] if len(args) > 0 else None
        x = self.encode(x)
        x = x.transpose(0, 1)
        x = self.attn(x, x, x, key_padding_mask=mask)[0].transpose(0, 1)
        return self.predict(x)


class BiLSTMCNN(BiLSTM):
    def __init__(self, vocab_size: int, embed_dim: int, hidden_dim: int, n_layer: int, embed_drop: float, rnn_drop: float):
        super().__init__(vocab_size, embed_dim, hidden_dim, n_layer, embed_drop, rnn_drop)
        self.conv = nn.Conv1d(in_channels=hidden_dim,
                              out_channels=hidden_dim, kernel_size=3, padding=1)

    def forward(self, x, *args):
        x = self.encode(x)
        x = x.transpose(1, 2)
        x = self.conv(x).transpose(1, 2).relu()
        return self.predict(x)


class BiLSTMConvAttRes(BiLSTM):
    def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, embed_drop: float, rnn_drop: float, n_head: int):
        super().__init__(vocab_size, embed_dim, hidden_dim, n_layer, embed_drop, rnn_drop)
        self.attn = nn.MultiheadAttention(hidden_dim, n_head)
        self.conv = nn.Conv1d(in_channels=hidden_dim,
                              out_channels=hidden_dim, kernel_size=3, padding=1)
        self.norm = nn.LayerNorm(hidden_dim)

    def forward(self, x, *args):
        mask = args[0] if len(args) > 0 else None
        x = self.encode(x)
        res = x
        x = self.conv(x.transpose(1, 2)).relu()
        x = x.permute(2, 0, 1)
        x = self.attn(x, x, x, key_padding_mask=mask)[0].transpose(0, 1)
        x = self.norm(res + x)
        return self.predict(x)


class CNN(nn.Module):
    def __init__(self, vocab_size: int, embed_dim: int, hidden_dim: int, embed_drop: float):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim)
        self.conv = nn.Conv1d(in_channels=embed_dim,
                              out_channels=hidden_dim, kernel_size=3, padding=1)
        self.embed_dropout = nn.Dropout(embed_drop)
        self.linear = nn.Linear(hidden_dim, embed_dim)

    def forward(self, x, *args):
        x = self.embedding(x)
        x = self.embed_dropout(x)
        x = x.transpose(1, 2)
        x = self.conv(x).transpose(1, 2).relu()
        x = self.linear(x)
        probs = torch.matmul(x, self.embedding.weight.t())
        return probs

2、配置对联项目

2.1、配置下载

首先下载对对联代码到本机或者云服务器,我用的是colab进行实验,用本地的pycharm或者其他IDE同样也可以。

并将1中下载到的数据集解压到当前目录(解压后的文件夹名称为couplet)
虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN_第4张图片

2.2、数据预处理

运行 preprocess.py 进行数据预处理

preprocess.py核心代码

def read_examples(fdir: Path):
    seqs = []
    tags = []
    with open(fdir / "in.txt", 'r', encoding='utf-8') as f:
        for line in f.readlines():
            seqs.append(line.split())
    with open(fdir / "out.txt", 'r', encoding='utf-8') as f:
        for line in f.readlines():
            tags.append(line.split())
    examples = [CoupletExample(seq, tag) for seq, tag in zip(seqs, tags)]
    return examples


def convert_examples_to_features(examples: List[CoupletExample], tokenizer: Tokenizer):
    features = []
    for example in tqdm(examples, desc="creating features"):
        seq_ids = tokenizer.convert_tokens_to_ids(example.seq)
        tag_ids = tokenizer.convert_tokens_to_ids(example.tag)
        features.append(CoupletFeatures(seq_ids, tag_ids))
    return features


def convert_features_to_tensors(features: List[CoupletFeatures], tokenizer: Tokenizer, max_seq_len: int):
    total = len(features)
    input_ids = torch.full((total, max_seq_len),
                           tokenizer.pad_id, dtype=torch.long)
    target_ids = torch.full((total, max_seq_len),
                            tokenizer.pad_id, dtype=torch.long)
    masks = torch.ones(total, max_seq_len, dtype=torch.bool)
    lens = torch.zeros(total, dtype=torch.long)
    for i, f in enumerate(tqdm(features, desc="creating tensors")):
        real_len = min(len(f.input_ids), max_seq_len)
        input_ids[i, :real_len] = torch.tensor(f.input_ids[:real_len])
        target_ids[i, :real_len] = torch.tensor(f.target_ids[:real_len])
        masks[i, :real_len] = 0
        lens[i] = real_len
    return input_ids, masks, lens, target_ids


def create_dataset(fdir: Path, tokenizer: Tokenizer, max_seq_len: int):
    examples = read_examples(fdir)
    features = convert_examples_to_features(examples, tokenizer)
    tensors = convert_features_to_tensors(features, tokenizer, max_seq_len)
    dataset = TensorDataset(*tensors)
    return dataset

运行后显示预训练成功。
虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN_第5张图片

2.3、训练

运行 main.py [-m model type] 进行训练
main.py核心代码:

def run():
    args = get_args()
    fdir = Path(args.dir)
    tb = SummaryWriter(args.logdir)
    device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    output_dir = Path(args.output)
    output_dir.mkdir(exist_ok=True, parents=True)
    logger.info(args)
    logger.info(f"loading vocab...")
    tokenizer = Tokenizer.from_pretrained(fdir / 'vocab.pkl')
    logger.info(f"loading dataset...")
    train_dataset = torch.load(fdir / 'train.pkl')
    test_dataset = torch.load(fdir / 'test.pkl')
    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=args.batch_size)
    logger.info(f"initializing model...")
    model = init_model_by_key(args, tokenizer)
    model.to(device)
    loss_function = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    if args.fp16:
        try:
            from apex import amp
            amp.register_half_function(torch, 'einsum')
            model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min')
    logger.info(f"num gpu: {torch.cuda.device_count()}")
    global_step = 0
    for epoch in range(args.epochs):
        logger.info(f"***** Epoch {epoch} *****")
        model.train()
        t1 = time.time()
        accu_loss = 0.0
        for step, batch in enumerate(train_loader):
            optimizer.zero_grad()
            batch = tuple(t.to(device) for t in batch)
            input_ids, masks, lens, target_ids = batch
            logits = model(input_ids, masks)
            loss = loss_function(logits.view(-1, tokenizer.vocab_size), target_ids.view(-1))
            if torch.cuda.device_count() > 1:
                loss = loss.mean()
            accu_loss += loss.item()
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            optimizer.step()
            if step % 100 == 0:
                tb.add_scalar('loss', loss.item(), global_step)
                logger.info(
                    f"[epoch]: {epoch}, [batch]: {step}, [loss]: {loss.item()}")
            global_step += 1
        scheduler.step(accu_loss)
        t2 = time.time()
        logger.info(f"epoch time: {t2-t1:.5}, accumulation loss: {accu_loss:.6}")
        if (epoch + 1) % args.test_epoch == 0:
            predict_demos(model, tokenizer)
            bleu, rl = auto_evaluate(model, test_loader, tokenizer)
            logger.info(f"BLEU: {round(bleu, 9)}, Rouge-L: {round(rl, 8)}")
        if (epoch + 1) % args.save_epoch == 0:
            filename = f"{model.__class__.__name__}_{epoch + 1}.bin"
            filename = output_dir / filename
            save_model(filename, model, args, tokenizer)
	

训练结果如下,刚开始模型的损失值在6左右,随着训练的进行,损失值逐渐降低到4,人工智能逐渐具有对对联的能力。
虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN_第6张图片
虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN_第7张图片

2.4、运行

通过上述20轮epoch的训练,此时AI已经具备对对联的能力,
我们只需要运行 clidemo.py <-p model path> 可在控制台进行AI对对联
或者运行 webdemo.py 可在Web端与AI进行对对联
虎年到,新年用Python与人工智能一起写春节对联 python+pytorch+Transformer+BiLSTM+ATTN+CNN_第8张图片

3、训练样例

经过20个epoch训练,我们得到的训练样例,AI为我们写出的下联是:

> 上联1:马齿草焉无马齿。 预测的下联:牛头花也有牛头 
> 上联2:天古天今,地中地外,古今中外存天地。预测的下联:人中古地,天上人中,天地古今在古今 
> 上联3:笑取琴书温旧梦。 预测的下联:闲来风月醉新情
> 上联4:日里千人拱手划船,齐歌狂吼川江号子。 预测的下联:江中万里开心破路,共唱长飞天国英人 
> 上联5:我有诗情堪纵酒。预测的下联:谁无画意可吟诗 
> 上联6:我以真诚溶冷血。 预测的下联:谁因大意荡清心 
> 上联7:三世业岐黄,妙手回春人共赞。预测的下联:一年家国白,雄心贺梦客同歌

好像还行(错觉)

4、与AI一起写虎年春联

那么值此新年之际,我们出几个虎年的春联上联来给AI对一对吧:

上联:春满大地福满人间。 预测的下联:秋一新天春一世下
上联:新年捷报虎添翼。 预测的下联:大日高流龙醉春
上联:四海笙歌迎虎岁。 预测的下联:一年水月醉龙春
上联:龙腾虎啸腊尽春回。 预测的下联:凤舞龙生人不秋不
上联:虎踞龙盘今胜昔。 预测的下联:龙生凤水古新春
上联:人民气魄如龙虎。 预测的下联:世国风风似凤人
上联:虎添双翼前程远。 预测的下联:龙有一春后气新

我去,这对了个寂寞啊,我就说是人工智障,那么我们再训练20轮epoch吧。

a few minutes later:

上联:春满大地福满人间。 预测的下联:福盈小天情盈世下
上联:新年捷报虎添翼。 预测的下联:盛岁春歌龙报春
上联:四海笙歌迎虎岁。 预测的下联:九州春舞贺龙年
上联:龙腾虎啸腊尽春回。 预测的下联:蛇舞莺鸣春来福满
上联:虎踞龙盘今胜昔。 预测的下联:龙鸣凤舞古如春
上联:人民气魄如龙虎。 预测的下联:社国精神似凤蛇
上联:虎添双翼前程远。 预测的下联:兔舞一春后业长

个人觉得最佳的一句是:龙腾虎啸腊尽春回,蛇舞莺鸣春来福满!

5、资源下载

虽然还有很多瑕疵,但是总算是有模有样了,训练好的模型我已经打包好了,可以点此链接下载:新年用Python与人工智能一起写春节对联,配置好环境后就可以直接开始对对联。

最后祝大家虎年大吉,祝CSDN越办越好!

你可能感兴趣的:(随便玩玩,pytorch,人工智能,python,lstm,transformer)