Pytorch使用实践,教程,库,调优,计算量,模型搭建

参考文章:

PyTorch官方教程中文版

http://pytorch123.com/

pytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友

https://github.com/zergtant/pytorch-handbook

用GPU训练的模型在本地CPU无法进行加载

https://www.jianshu.com/p/0ae1b7522261

torchvision.models — PyTorch master documentation

https://pytorch.org/docs/stable/torchvision/models.html#classification

np.linalg.norm(求范数)

https://blog.csdn.net/hqh131360239/article/details/79061535

PyTorch中网络里面的inplace=True字段的意思

https://www.jianshu.com/p/8385aa74e2de

处理自然语言的torchtext,处理音频的torchaudio,以及处理图像视频的torchvision

https://zhuanlan.zhihu.com/p/145810572

https://github.com/pytorch/vision

https://github.com/pytorch/audio

https://github.com/pytorch/text

pytorch模型调优

深度学习debug沉思录!

https://mp.weixin.qq.com/s/Dk5reVIfKgt5U_oBpV8jbw

【pytorch】筛选冻结部分网络层参数同时设置有参数组的时候该怎么办?

https://blog.csdn.net/lingzhou33/article/details/88977700

torch.backends.cudnn.benchmark ?!平行库算子自动选择

https://zhuanlan.zhihu.com/p/73711222

pytorch---之cudnn.benchmark和cudnn.deterministic

https://blog.csdn.net/zxyhhjs2017/article/details/91348108

【深度学习技巧】超参数寻找--最合适的学习速率

https://blog.csdn.net/shankezh/article/details/88025669

机器学习超参数优化算法-Hyperband

https://www.imooc.com/article/269113

深度学习入门知识整理-训练技巧以及模型调优

https://blog.csdn.net/ForgetThatNight/article/details/91856052

模型参数和计算量统计

获取网络模型的每一层参数量与计算量(Flops)———Pytorch

https://blog.csdn.net/comway_Li/article/details/105079731

Flops counter for convolutional networks in pytorch framework——ptflops工具

https://github.com/sovrasov/flops-counter.pytorch

Count the MACs / FLOPs of your PyTorch model.——thop工具

https://github.com/Lyken17/pytorch-OpCounter

torchstat,工具使用,显示每层的参数

https://blog.csdn.net/u013685264/article/details/108274289

Pytorch获取中间层结果,调优

『PyTorch』第十六弹_hook技术 - 叠加态的猫 - 博客园

https://www.cnblogs.com/hellcat/p/8512090.html

PyTorch技巧:

PyTorch杂谈 | (1) pack_padded_sequence和pad_packed_sequence

https://blog.csdn.net/sdu_hao/article/details/105408552

Pytorch中named_children()和named_modules()的区别

https://blog.csdn.net/watermelon1123/article/details/98036360

ReflectionPad2d、InstanceNorm2d详解及实现,图片生成

https://zhuanlan.zhihu.com/p/66989411

pytorch -- topk()

https://blog.csdn.net/u014264373/article/details/86525621

pytorch矩阵乘法mm,bmm

https://blog.csdn.net/bufanwangzi/article/details/101541098

python 版本 torchnet 简单使用文档,AverageValueMeter,confusionmeter

https://blog.csdn.net/u010510549/article/details/90263627

torch.mean参数解释

https://blog.csdn.net/u013049912/article/details/105628097

python---argparse解析bool值

https://www.jianshu.com/p/375b72d8acc7

Python实践:

Python进阶-----静态方法(@staticmethod)

https://www.cnblogs.com/Meanwey/p/9788713.html

模型导入:

pytorch 如何加载部分预训练模型

https://blog.csdn.net/amds123/article/details/63684716

【PyTorch】state_dict详解

https://blog.csdn.net/bigFatCat_Tom/article/details/90722261

网络初始化:

一文搞懂深度网络初始化(Xavier and Kaiming initialization)

https://www.jianshu.com/p/f2d800388d1c

Torch数据集读入:

torch.utils.data.DataLoader使用方法

https://www.cnblogs.com/demo-deng/p/10623334.html

Pytorch:transforms的二十二个方法(很好)

https://blog.csdn.net/weixin_38533896/article/details/86028509

torch.cat与torch.chunk的使用

https://zhuanlan.zhihu.com/p/59141209

Torch网络初始化:

Pytorch nn.init 参数初始化方法

https://blog.csdn.net/weixin_42018112/article/details/90725819

pytorch系列 -- 9 pytorch nn.init 中实现的初始化函数 uniform, normal, const, Xavier, He initialization

https://blog.csdn.net/dss_dssssd/article/details/83959474

Torch网络层构建:

nn.Module的深入分析

https://www.jianshu.com/p/fa59e40698b5

pytorch学习笔记四:torch.nn下常用网络层(layer)详解

https://blog.csdn.net/qq_39507748/article/details/105371172

卷积与逆卷积:

nn.Conv2d 参数及输入输出详解

https://www.cnblogs.com/siyuan1998/p/10809646.html

Pytorch——conv2d参数使用

https://blog.csdn.net/lzc842650834/article/details/90265621

torch.nn.Conv2d() 用法讲解

https://blog.csdn.net/qq_38863413/article/details/104108808

pytorch函数中的dilation参数的作用

https://blog.csdn.net/qq_36167072/article/details/104720202

BN层:

深度学习笔记(三):BatchNorm(BN)层

https://blog.csdn.net/wjinjie/article/details/105028870

BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结,不同领域应用不同的归一化层

https://blog.csdn.net/liuxiao214/article/details/81037416

Dropout和BN(层归一化)详解

https://blog.csdn.net/qq_40176087/article/details/105904379

激活函数:

激活函数ReLU、Leaky ReLU、PReLU和RReLU

https://blog.csdn.net/qq_23304241/article/details/80300149

深度学习—激活函数详解(Sigmoid、tanh、ReLU、ReLU6及变体P-R-Leaky、ELU、SELU、Swish、Mish、Maxout、hard-sigmoid、hard-swish)

https://blog.csdn.net/jsk_learner/article/details/102822001

损失函数:

pytorch损失函数之nn.BCELoss()(为什么用交叉熵作为损失函数)

https://blog.csdn.net/geter_CS/article/details/84747670

回归损失函数1:L1 loss, L2 loss以及Smooth L1 Loss的对比 - Brook_icv - 博客园

https://www.cnblogs.com/wangguchangqing/p/12021638.html

Focal loss论文详解

https://zhuanlan.zhihu.com/p/49981234

优化器:

简单认识Adam优化器

https://www.jianshu.com/p/aebcaf8af76e

torch.optim优化算法理解之optim.Adam()

https://www.jianshu.com/p/f2d800388d1c

深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam) - 郭耀华 - 博客园

https://www.cnblogs.com/guoyaohua/p/8542554.html

PyTorch 学习笔记(七):PyTorch的十个优化器

https://blog.csdn.net/u011995719/article/details/88988420

池化:

Pytorch层--AdaptiveAvgPool2d

https://blog.csdn.net/u010472607/article/details/89555206

torch之AvgPool2d

https://blog.csdn.net/yangwangnndd/article/details/95510597

Dropout:

pytorch之Dropout

https://www.jianshu.com/p/636be9f8f046

华为突破封锁,对标谷歌Dropout专利,开源自研算法Disout

https://blog.csdn.net/QbitAI/article/details/106232701

分类:

pytorch中tf.nn.functional.softmax(x,dim = -1)对参数dim的理解

https://blog.csdn.net/Will_Ye/article/details/104994504

torch.nn.functional中softmax的作用及其参数说明 - 慢行厚积 - 博客园

https://www.cnblogs.com/wanghui-garcia/p/10675588.html

Torch网络实践:

pytorch识别CIFAR10:训练ResNet-34(准确率80%)

https://www.cnblogs.com/zhengbiqing/p/10432169.html

pytorch 网络结构可视化方法汇总(三种实现方法详解)

https://blog.csdn.net/qq_27825451/article/details/96856217

其他:

Pytorch使用tensorboardX可视化。超详细!!!

https://www.jianshu.com/p/46eb3004beca

详解PyTorch项目使用TensorboardX进行训练可视化

https://blog.csdn.net/bigbennyguo/article/details/87956434

【Python】浅谈 鸭子类型 (Duck Typing)

https://blog.csdn.net/qq_39478403/article/details/107371850

Python 中的鸭子类型(duck typing),协议和接口

https://blog.csdn.net/u012193416/article/details/89398627

Torch报错解决:

[临时笔记] pytorch报错消息及其解决纪录

https://blog.csdn.net/LoseInVain/article/details/86140412

你可能感兴趣的:(深度学习,python)