import torch.nn as nn
import torch.nn.functional as func
class LeNet(nn.Module):
def __init__(self):
super(LeNet,self).__init__()
self.conv1=nn.Conv2d(3,6,5)
self.pool1=nn.MaxPool2d(2,2)
self.conv2=nn.Conv2d(6,16,5)
self.pool2=nn.MaxPool2d(2,2)
self.fc1=nn.Linear(16*5*5,120)
self.fc2=nn.Linear(120,84)
self.fc3=nn.Linear(84,10)
def forward(self,x):
x=func.relu(self.conv1(x)) # input(3, 32, 32) output(6, 28, 28)
x=self.pool1(x) # output(6, 14, 14)
x=func.relu(self.conv2(x)) # output(16,10,10)
x=self.pool2(x) # output(16,5,5)
x=x.view(-1,16*5*5) # 展平为向量,output(16*5*5)
x=func.relu(self.fc1(x)) # output(120)
x=func.relu(self.fc2(x)) # output(84)
x=self.fc3(x) # output(10)
return x
import torch
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transforms
def main(epoch_num,log_interval):
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
'''
关于torchvision.datasets下载数据集的说明:
download=True 时会下载数据集,如果本地有数据集,将download设置为False
用torchvision下载的数据集和我们在官网下载的CIFAR10数据集是完全相同的,只是orchvision会对数据集做预处理。
'''
# 50000张训练图片
train_set = torchvision.datasets.CIFAR10(root='./CIFAR10/cifar-10-python', train=True,
download=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=16,
shuffle=True)
# 10000张验证图片
val_set = torchvision.datasets.CIFAR10(root='./CIFAR10/cifar-10-python', train=False,
download=False, transform=transform)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=10000,
shuffle=False, num_workers=0)
# 这里将val_loader整理放入了迭代器,所以val_loader的batch_size=10000
val_data_iter = iter(val_loader)
val_image, val_label = val_data_iter.next()
# classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
model = LeNet()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(epoch_num):
running_loss = 0.0
for step, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
'''
关于 with torch.no_grad() 的说明:
设置每500步进行一次测试,with是一个上下文管理器。
如果没有 with torch.no_grad(),在测试时候节点数值也会进行求导,占用大量资源,导致内存崩溃。
所以在测试时应该禁用require_grad,这样就不会改变模型的参数。
'''
if step % log_interval == 0:
with torch.no_grad():
outputs = model(val_image) # [batch, 10]
predict_y = torch.max(outputs, dim=1)[1]
accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)
print('[%d, %5d] train_loss: %.3f test_accuracy: %.3f' %
(epoch, step, running_loss / log_interval, accuracy))
running_loss = 0.0
print('Finished Training')
if __name__ == '__main__':
epoch_num=10
log_interval=500
main(epoch_num,log_interval)
一般多分类问题,模型最后一层输出的是x属于每一个分类的概率,即用func.log_softmax()归一化之后输出概率。
但根据CrossEntropyLoss()的公式可以发现,交叉熵损失函数中已经有了log_softmax,因此模型不需要输出log_softmax()的结果。
关于这个问题可以参考博客:Pytorch 中使用nn.CrossEntropyLoss的注意点(不需要额外的softmax)