安装python环境管理器virtualenv,(anaconda和ros有些冲突,因此不用anaconda)
sudo apt-get install virtualenv
创建一个环境名为ioussd的python环境
virtualenv -p /usr/bin/python3.6 ioussd
激活环境
source ioussd/bin/activate
激活后安装python的各种包
安装教程
``
python3.5+
cuda
(version 10.2)torch
(tested on 1.4.0)torchvision
(tested on 0.5.0)opencv
shapely
mayavi
spconv
(v1.2)python3.6
cuda
(version 11.2)torch
(tested on 1.7.1)torchvision
(tested on 0.8.2)opencv
shapely
mayavi
spconv
(v1.0)source ioussd/bin/activate
pip install torch==1.4.0 torchvision==0.5.0
若是30系列显卡则使用如下命令安装pytorch
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
sudo apt-get remove --purge cmake
下载好后复制到一个特定位置,例如/usr/local/cmake/
sudo cp -r ~/liang/cmake-3.14.0-Linux-x86_64 /usr/local/cmake/
sudo gedit ~/.bashrc
export PATH=/usr/local/cmake/cmake-3.14.0-Linux-x86_64/bin:$PATH
验证cmake
cmake --version
输出版本若是3.14.0即可
git clone https://github.com/traveller59/spconv.git --recursive
sudo apt-get install libboost-all-dev
然后安装spconv
source ioussd/bin/activate
cd spconv
python setup.py bdist_wheel
cd dist
pip install spconv-1.2-cp36-cp36m-linux_x86_64.whl
主要原因应该是硬件能够支持的算力比较高,能达到8.6,但是cuda11.0支持不了这么高的算力,通过下述脚本,设置环境变量,降低算力要求,即可:
export TORCH_CUDA_ARCH_LIST="7.5"
source ioussd/bin/activate
pip install easydict tensorboardX scikit-image numpy numba pyyaml tqdm opencv-python
source ioussd/bin/activate
cd for_ubuntu502/PVRCNN-V1.1/
cd pvdet/dataset/roiaware_pool3d/
python setup.py install
cd pvdet/ops/iou3d_nms/
python setup.py install
安装这些库(roiaware_pool3d,iou3d_nms,pointnet2)报错参考“AT_CHECK“
解决链接
安装pointnet2报错“THCState_getCurrentStream"
解决链接
cd pvdet/model/pointnet2/pointnet2_stack
python set_up.py install
cd new_train/ops/fps_wit_forgound_point/
python setup.py install
source ioussd/bin/activate
pip install mayavi
pip install pyqt5
sudo apt-get install libxcb-xinerama0
Download the 3D KITTI detection dataset from here. Data to download include:
Create cropped point cloud and sample pool for data augmentation, please refer to SECOND.
$ python new_train/tools/create_data_info.py
└── DATA_DIR
├── training <-- training data
| ├── image_2
| ├── label_2
| ├── velodyne
| └── velodyne_reduced
└── testing <--- testing data
| ├── image_2
| ├── label_2
| ├── velodyne
| └── velodyne_reduced
可以软链接KITTI数据集,从而不用进行数据拷贝
方法链接