【源码学习-spark2.1.1和yarn2.11】SparkOnYarn部署流程(二)ApplicationMaster_CoarseGrainedExecutorBackend

002-源码spark-2.1.1版

  • SparkOnYarn部署流程-ApplicationMaster
  • SparkOnYarn部署流程-CoarseGrainedExecutorBackend

SparkOnYarn部署流程-ApplicationMaster

如果走集群模式的话,bin/java org.apache.spark.deploy.yarn.ApplicationMaster当该命令提交后,client的事情就算完了。
alt+ctrl+shift+n,搜索ApplicationMaster进入ApplicationMaster.scala源码文件,
如果走的是client客户端,ctrl+shift+alt+n搜索org.apache.spark.deploy.yarn.ExecutorLauncher进入ApplicationMaster.scala源码文件,最终调用的依然是ApplicationMaster.main(args)。就是两种模式走的代码逻辑是一样的。
【源码学习-spark2.1.1和yarn2.11】SparkOnYarn部署流程(二)ApplicationMaster_CoarseGrainedExecutorBackend_第1张图片
1.0 启动进程
进入ApplicationMaster.scala源文件后,执行752行main方法。

  def main(args: Array[String]): Unit = {
    SignalUtils.registerLogger(log)
    val amArgs = new ApplicationMasterArguments(args)

    // Load the properties file with the Spark configuration and set entries as system properties,
    // so that user code run inside the AM also has access to them.
    // Note: we must do this before SparkHadoopUtil instantiated
    if (amArgs.propertiesFile != null) {
      Utils.getPropertiesFromFile(amArgs.propertiesFile).foreach { case (k, v) =>
        sys.props(k) = v
      }
    }
    SparkHadoopUtil.get.runAsSparkUser { () =>
      master = new ApplicationMaster(amArgs, new YarnRMClient)
      System.exit(master.run())
    }
  }

对参数进行封装(点进去,类似SparkSubmit.scala源码文件中的封装参数类)
new ApplicationMasterArguments(args)

在工具类SparkHadoopUtil中创建应用管理器对象
new ApplicationMaster(amArgs, new YarnRMClient)
ctrl+鼠标左键ApplicationMaster走到ApplicationMaster.scala源码文件的97行有一个心跳周期变量heartbeatInterval;往下111行,有个一个rpc环境变量rpcEnv(RPC是进程与进程之间交互的规则,就是一些协议,早期同台机器进程间交互,一个进程调用另一个进程叫IPC)会有一个进程交互的环境;还有一个终端变量amEndpoint。

运行对象
master.run()
ctrl+鼠标左键run走到183行,该方法中判断是否是集群,

  if (isClusterMode) {
    runDriver(securityMgr)
  } else {
    runExecutorLauncher(securityMgr)
  }

1.1
ctrl+鼠标左键runDriver运行driver走到392行,然后启动用户应用(即提交命令中的–class)

userClassThread = startUserApplication()

获取用户应用的类的main方法(就是提交命令的SparkPi,或者自己写的程序main方法)
ctrl+鼠标左键startUserApplicaition走到608行,方法中获取用户类加载器,然后加载类信息获取main方法;构建一个new Thread,命名为Driver,然后启动线程执行用户类的main方法。

userThread.setContextClassLoader(userClassLoader)
userThread.setName("Driver")
userThread.start()
userThread

Driver在整个过程中是一个线程的名称。

ApplicationMaster作为中间的桥梁,既和资源交互(RM、NM)又和计算交互(Driver、Executor),资源和计算不直接交互。
1.2
走到418行,

userClassThread.join()

线程进行join表示该线程不执行完,不能往下执行的。把另外线程加入当前线程,目的保证该线程执行完,线程中所需要执行的任务要准备好。

走到409行,注册ApplicationMaster

 registerAM(sc.getConf, rpcEnv, driverRef, sc.ui.map(_.appUIAddress).getOrElse(""),
          securityMgr)

ApplicationMaster进程与yarn进程交互通过rpcEnv。
ctrl+鼠标左键registerAM走到329行,方法中有RpcEndpointAddress终端地址。
在359行,有client代表的是YarnRMClient,获取yarn资源

allocator = client.register(driverUrl,
  driverRef,
  yarnConf,
  _sparkConf,
  uiAddress,
  historyAddress,
  securityMgr,
  localResources)
allocator.allocateResources()
reporterThread = launchReporterThread()

虽然这里client.register看上去像client(RM)进行注册,其实ApplicationMaster向client(RM)注册一下申请资源,然后RM进行allocateResources()分配资源,

1.2.1 分配资源
ctrl+鼠标左键allocateResources进入YarnAllocator.scala源码文件254行,获取资源,查看资源大小,处理资源handleAllocatedContainers(allocatedContainers.asScala)走到407行,
在这里你会发现有你说熟悉的本地化策略(移动数据不如移动计算),最好的是进程本地化,其次节点本地化,然后机架本地化。
然后走到440行运行资源

runAllocatedContainers(containersToUse)

ctrl+鼠标左键runAllocatedContainers走到483行,这时所有可用的container资源都有了。该方法中有个launcherPool,走到138行有对该变量的赋值,是守护线程池。

  private val launcherPool = ThreadUtils.newDaemonCachedThreadPool(
    "ContainerLauncher", sparkConf.get(CONTAINER_LAUNCH_MAX_THREADS))

ctrl+鼠标左键newDaemonCachedThreadPool进入ThreadUtils.scala源码文件63行,这一流程说明从线程池里构建我们的线程。

  /**
   * Create a cached thread pool whose max number of threads is `maxThreadNumber`. Thread names
   * are formatted as prefix-ID, where ID is a unique, sequentially assigned integer.
   */
  def newDaemonCachedThreadPool(
      prefix: String, maxThreadNumber: Int, keepAliveSeconds: Int = 60): ThreadPoolExecutor = {
    val threadFactory = namedThreadFactory(prefix)
    val threadPool = new ThreadPoolExecutor(
      maxThreadNumber, // corePoolSize: the max number of threads to create before queuing the tasks
      maxThreadNumber, // maximumPoolSize: because we use LinkedBlockingDeque, this one is not used
      keepAliveSeconds,
      TimeUnit.SECONDS,
      new LinkedBlockingQueue[Runnable],
      threadFactory)
    threadPool.allowCoreThreadTimeOut(true)
    threadPool
  }

在YarnAllocator.scala源码文件中505行launcherPool.execute(new Runnable {,从线程池拿一个线程出来执行runnable,运行executor。

 new ExecutorRunnable(
   Some(container),
   conf,
   sparkConf,
   driverUrl,
   executorId,
   executorHostname,
   executorMemory,
   executorCores,
   appAttemptId.getApplicationId.toString,
   securityMgr,
   localResources
 ).run()
 updateInternalState()

ctrl+鼠标左键ExecutorRunnable进入ExecutorRunnable.scala源码文件46行,该类里有rpc属性,还有nmClient属性(说明要和NodeManager进行交互了),在NodeManager上启动container资源。

  var rpc: YarnRPC = YarnRPC.create(conf)
  var nmClient: NMClient = _

  def run(): Unit = {
    logDebug("Starting Executor Container")
    nmClient = NMClient.createNMClient()
    nmClient.init(conf)
    nmClient.start()
    startContainer()
  }

ctrl+鼠标左键startContainer走到87行,方法中准备commands

val commands = prepareCommand()

ctrl+鼠标左键prepareCommand走到132行,方法中和Client.scala源码文件的createContainerLaunchContext一样有很命令准备。
走到210行,Backend后端,前台展示,后台数据交互

YarnSparkHadoopUtil.addOutOfMemoryErrorArgument(javaOpts)
val commands = prefixEnv ++ Seq(
  YarnSparkHadoopUtil.expandEnvironment(Environment.JAVA_HOME) + "/bin/java",
  "-server") ++
  javaOpts ++
  Seq("org.apache.spark.executor.CoarseGrainedExecutorBackend",
    "--driver-url", masterAddress,
    "--executor-id", executorId,
    "--hostname", hostname,
    "--cores", executorCores.toString,
    "--app-id", appId) ++
  userClassPath ++
  Seq(
    s"1>${ApplicationConstants.LOG_DIR_EXPANSION_VAR}/stdout",
    s"2>${ApplicationConstants.LOG_DIR_EXPANSION_VAR}/stderr")

// TODO: it would be nicer to just make sure there are no null commands here
commands.map(s => if (s == null) "null" else s).toList

因为这里使用的是bin/java,那么肯定是进程启动,而CoarseGrainedExecutorBackend正好是jps下的进程名称。

SparkOnYarn部署流程-CoarseGrainedExecutorBackend

该进程肯定也有main方法,
ctrl+shift+alt+n搜索org.apache.spark.executor.CoarseGrainedExecutorBackend进入CoarseGrainedExecutorBackend.scala源码文件,找到main方法在236行,首先模式匹配进行赋值,最后运行run(driverUrl, executorId, hostname, cores, appId, workerUrl, userClassPath)

ctrle+鼠标左键run走到177行,与driver交互,准备环境,在整个spark通信环境中把executor对象注册进去,接着rpc的环境等待执行,

  val env = SparkEnv.createExecutorEnv(
    driverConf, executorId, hostname, port, cores, cfg.ioEncryptionKey, isLocal = false)

  env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(
    env.rpcEnv, driverUrl, executorId, hostname, cores, userClassPath, env))
  workerUrl.foreach { url =>
    env.rpcEnv.setupEndpoint("WorkerWatcher", new WorkerWatcher(env.rpcEnv, url))
  }
  env.rpcEnv.awaitTermination()
  SparkHadoopUtil.get.stopCredentialUpdater()

这里的Executor并不是真正的executor,因为在CoarseGrainedExecutorBackend中有个executor变量,这里才是真正的计算对象。所谓的executor就是类中的属性,类中的对象。

ctrl+鼠标左键CoarseGrainedExecutorBackend走到39行,该类继承了ThreadSafeRpcEndpoint,点进去,进入RpcEndpoint.scala源码文件148行,
这个终端到底在干什么?
【源码学习-spark2.1.1和yarn2.11】SparkOnYarn部署流程(二)ApplicationMaster_CoarseGrainedExecutorBackend_第2张图片
终端的生命周期:构建->启动->接收->停止
因为CoarseGrainedExecutorBackend继承了ThreadSafeRpcEndpoint,所以相应的也实现了onStart()、receive方法

  override def onStart() {
    logInfo("Connecting to driver: " + driverUrl)
    rpcEnv.asyncSetupEndpointRefByURI(driverUrl).flatMap { ref =>
      // This is a very fast action so we can use "ThreadUtils.sameThread"
      driver = Some(ref)
      ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
    }(ThreadUtils.sameThread).onComplete {
      // This is a very fast action so we can use "ThreadUtils.sameThread"
      case Success(msg) =>
        // Always receive `true`. Just ignore it
      case Failure(e) =>
        exitExecutor(1, s"Cannot register with driver: $driverUrl", e, notifyDriver = false)
    }(ThreadUtils.sameThread)
  }

在onStart方法中,有个driver的引用,向引用发送一个注册执行器的请求,executor反向注册到driver,确保driver知道executor的情况。

  override def receive: PartialFunction[Any, Unit] = {
    case RegisteredExecutor =>
      logInfo("Successfully registered with driver")
      try {
        executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
      } catch {
        case NonFatal(e) =>
          exitExecutor(1, "Unable to create executor due to " + e.getMessage, e)
      }

    case RegisterExecutorFailed(message) =>
      exitExecutor(1, "Slave registration failed: " + message)

    case LaunchTask(data) =>
      if (executor == null) {
        exitExecutor(1, "Received LaunchTask command but executor was null")
      } else {
        val taskDesc = ser.deserialize[TaskDescription](data.value)
        logInfo("Got assigned task " + taskDesc.taskId)
        executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber,
          taskDesc.name, taskDesc.serializedTask)
      }

    case KillTask(taskId, _, interruptThread) =>
      if (executor == null) {
        exitExecutor(1, "Received KillTask command but executor was null")
      } else {
        executor.killTask(taskId, interruptThread)
      }

    case StopExecutor =>
      stopping.set(true)
      logInfo("Driver commanded a shutdown")
      // Cannot shutdown here because an ack may need to be sent back to the caller. So send
      // a message to self to actually do the shutdown.
      self.send(Shutdown)

    case Shutdown =>
      stopping.set(true)
      new Thread("CoarseGrainedExecutorBackend-stop-executor") {
        override def run(): Unit = {
          // executor.stop() will call `SparkEnv.stop()` which waits until RpcEnv stops totally.
          // However, if `executor.stop()` runs in some thread of RpcEnv, RpcEnv won't be able to
          // stop until `executor.stop()` returns, which becomes a dead-lock (See SPARK-14180).
          // Therefore, we put this line in a new thread.
          executor.stop()
        }
      }.start()
  }

在recive方法中,接收driver对executor的反馈信息。有创建executor,有加载executor等。

你可能感兴趣的:(源码,spark,大数据,scala,yarn,源码)