可视化数据结构——让你的树跃然纸上

前言

大家好,我是jay。在平时的工作中,树这种数据结构想必我们都不会陌生。本文会介绍从数据到渲染一个树,节点间的连线我们会采用SVG来绘画,同时也会介绍节点间连线的计算方法。我们也会以动效的形式来展现树的一些常规操作,包括深度优先遍历和广度优先遍历。

开始构建一棵树

开始之前,先来大概说一下一棵常规的树的数据结构,一般来说,我们说的树只有一个根结点,每个节点的数据结构大概可以使用下面的代码来表示:

interface TreeNode {
    value: T;
    id: Number;
    children: TreeNode[]
}

大致了解了树与节点的数据结构之后,我们约定一棵常规的树的数据结构如下:

export default {
    name: 'root',
    root: true,
    id: 1,
    children: [{
        name: 2,
        id: 2,
        children: []
    }, {
        name: 3,
        id: 3,
        children: [{
            name: 4,
            id: 4,
            children: []
        }]
    }]
}

节点渲染

下面先来实现节点的渲染,像这种这么规整的树结构渲染,容易想到的应该是使用递归的形式去渲染节点以及其子节点,可以写出如下代码:

const app = document.querySelector('#app')
renderNodes()
function renderNodes() {
    const html = `
        
${renderNode(tree, null)}
` app.innerHTML += html } function renderNode(tree, parentId) { return `
${tree.name}
${tree.children.length > 0 ? tree.children.map(child => { return renderNode(child, tree.id) }).join('') : ''}
` }

通过上述的递归代码,我们可以渲染出节点如上,不过有一说一,上面渲染出来的东西可以说跟树毫不相关。别着急,我们利用CSS让它初具树的模型,主要使用flex布局,让节点同层级自动撑开,布局代码如下:

body {
    padding: 0;
    margin: 0;
}
.node {
    width: 50px;
    height: 50px;
    border-radius: 100%;
    border: 1px solid gray;
    text-align: center;
    line-height: 50px;
    margin: 20px;
}
.tree-children {
    display: flex;
}
.tree {
    display: flex;
    flex-direction: column;
    align-items: center;
}

可以看到通过数行CSS代码,就可以让杂乱无章节点看起来具有树的形式。还没看出来?没事,把边加上就好了。

节点边绘制

边的绘制利用的是SVG,如果你对SVG还不是很了解的话,可以先看一下我的这一篇文章SVG实例入门与动画实战

边的绘制会涉及到一些计算,我会通过画图的形式来尽量详细讲解。首先,绘制边其实我们要做的是以一个子节点的中心作为起点,以它的父节点的中心作为终点,画一条斜线。父子节点的相对关系有如下三种:

  • 父节点在子节点右上方

  • 父节点在子节点左上方

  • 父节点在子节点正上方

我们下面以父节点在子节点的右上方为例,讲解SVG元素的坐标与宽高计算,以及边的绘画。首先,画一条斜线的话就类似于下面这样:

那么为了方便计算,我们可以这么地放置一个SVG元素如下:

这里我们让SVG的两个顶点落在两个节点的中心点上,因为两个节点的中心点坐标是比较容易求得的,而利用两个点的位置信息也可以很方便的求得SVG的宽和高,进而SVG元素的位置就确定了。而我们画斜线的起点跟终点都是SVG元素的顶点,坐标也是十分明了的。让尽量多的点落在特殊点上,会让我们的求解变得简单很多。浏览器正常情况下都是以左上角的点为坐标原点,坐标轴关系大致如下:

下面先来求SVG的起始顶点坐标,即左上角点的坐标,如图所示:

这里的节点因为我加了圆角不好表示,所以我这里把原先的矩形给一起表示出来,以下说的矩形坐标原点是矩形左上角的顶点。假设中心点为A的矩形R1坐标原点横坐标为x1R1宽度为w1;中心点为B的矩形R2坐标原点横坐标为x2R2宽度为w2。那么从图中不难看出OA = (x1+w1/2) - (x2+w2/2)OA就是SVG元素的宽度,O点横坐标也容易得出为x2+w2/2

同理,假设R1坐标原点纵坐标为y1R1高度为h1R2坐标原点纵坐标为y2R2高度为h2。也可求得OB = (y2+h2/2) - (y1+h1/2)OB就是SVG元素的高度,O点的纵坐标为y1+h1/2。到这里,我们就求出了这个SVG元素的宽高,位置。宽高用来定位斜线的坐标,位置用来定位与节点间的关系。以上就是父节点在子节点右上方位置关系时,计算的思路,其他两种情况的计算思路大同小异。具体代码实现如下,主要的绘制逻辑是renderLine()

renderLines()
function renderLines() {
    const nodes = document.querySelectorAll('.tree-node')
    let fragment = document.createElement('div')
    for (let i = 0; i < nodes.length; i++) {
        const node = nodes[i]
        const nodeId = node.getAttribute('id')
        const parentId = node.getAttribute('parent-id')
        const line = renderLine(`line-${nodeId}-${parentId}`)
        fragment.appendChild(line)
    }
    const svgContainer = document.querySelector('.svg-container')
    svgContainer.innerHTML = fragment.innerHTML
}

//具体一条边的绘制逻辑
function renderLine(id) {
    const line = document.querySelector(`.${id}`)
    let svg = null,
        path = null
    if (!line) {
        svg = document.createElementNS('http://www.w3.org/2000/svg', 'svg')
        path = document.createElementNS('http://www.w3.org/2000/svg', 'path')
        path.setAttributeNS('http://www.w3.org/2000/svg', 'd', '')
        svg.appendChild(path)
        svg.setAttribute('id', id)
    } else {
        svg = line
        path = svg.querySelector('path')
    }
    const arr = id.split('-')
    const nodeId = arr[1]
    const parentId = arr[2]
    const node = document.getElementById(nodeId)
    const parentNode = document.getElementById(parentId)

    const { x: nx, y: ny } = getNodePosition(node)
    const { w: nw, h: nh } = getNodeSize(node)
    const { x: px, y: py } = getNodePosition(parentNode)
    const { w: pw, h: ph } = getNodeSize(parentNode)

    let width, height, left, top
    let d
    height = (ny + nh / 2) - (py + ph / 2)
    top = py + ph / 2
    if (px > nx) {
        width = (px + pw / 2) - (nx + nw / 2)
        left = nx + nw / 2
        d = `M${width} 0 L0 ${height}` //从右上角至左下角画线
    } else if (px < nx) {
        width = (nx + nw / 2) - (px + pw / 2)
        left = px + pw / 2
        d = `M0 0 L${width} ${height}` //从左上角至右下角画线
    } else {
        width = 2
        left = px + pw / 2
        d = `M ${width / 2} 0 L${width / 2} ${height}` //画一条竖直向下的线
    }

    const length = Math.round(Math.sqrt(Math.pow(width, 2) + Math.pow(height, 2)))
    const val = length - (pw / 2 + nw / 2)

    svg.setAttribute('width', width)
    svg.setAttribute('height', height)
    path.setAttributeNS('http://www.w3.org/2000/svg', 'd', d)
    path.setAttribute('style', `stroke:black;stroke-dasharray:${val};stroke-dashoffset:-${pw / 2}`)
    svg.style = `position:absolute;left:${left}px;top:${top}px`
    return svg
}

function getNodePosition(node) {
    const { x, y } = node.getBoundingClientRect()
    return { x, y }
}

function getNodeSize(node) {
    const { width, height } = window.getComputedStyle(node)
    return { w: getNumFromPx(width), h: getNumFromPx(height) }
}

function getNumFromPx(str) {
    return Number(str.substring(0, str.indexOf('p')))
}

上面就是全部绘制边的逻辑,为了美观,我使用了stroke-dasharraystroke-dashoffset去隐藏掉了多余的线段,这两个属性也在我上面提到过的文章里介绍到,不熟悉的同学可以先去看看。实现效果如下:

节点操作

这里我们来介绍一下最常见的几种节点操作,包括选中节点、增加节点、删除节点。在做增删节点之前首先要做的是选中节点,这里所有的事件都会委托在父元素上。

选中节点

选中节点的代码比较简单,保存点击的节点,将点击的对应节点加上样式即可。

let currentNode

function initEvent() {
    document.addEventListener('click', e => {
        const classList = e.target.classList
        if ([...classList].includes('node')) {
            return clickNode(e)
        } else {
            //取消选中效果
            return cancelClickNode()
        }
    })
}

function clickNode(e) {
    if (currentNode) {
        currentNode.classList.remove('current')
    }
    currentNode = e.target
    currentNode.classList.add('current')
}

function cancelClickNode() {
    if (currentNode) {
        currentNode.classList.remove('current')
    }
    currentNode = null
}

增删节点

增删节点这里采取的是直接操作dom增加子节点或者删除节点,然后再去维护数据。节点的位置排开会有flex布局帮我们做,而边的计算则要在节点布局完成之后重新计算。

有了布局实现与边的绘制之后,增删操作都会变的比较简单,可以直接看代码:

function findNodeById(node, id) {
    let val = null

    function dfs(node, id) {
        if (val) return
        if (node.id == id) {
            val = node
            return val
        } else if (node.children.length > 0) {
            for (let i = 0; i < node.children.length; i++) {
                dfs(node.children[i], id)
            }
        }
    }
    dfs(node, id)
    return val
}

function addNode() {
    if (!currentNode) {
        return
    }
    const newId = genId()
    const text = 'new' //为了方便,直接写死了节点的内容
    const child = getNodeFragment(newId, currentNode.id, text)
    const children = currentNode.parentNode.querySelector('.tree-children')
    children.appendChild(child)
    renderLines()

    //维护数据
    const nodeData = findNodeById(data, currentNode.id)
    nodeData.children.push({ id: newId, name: text, children: [] })
}

function getNodeFragment(id, parentId, text) {
    const div = document.createElement('div')
    div.classList = 'tree'
    div.innerHTML = `
        
${text}
` return div } function deleteNode() { const parentId = currentNode.getAttribute('parent-id') if (parentId === 'null') { return } const node = currentNode.parentNode node.parentNode.removeChild(node) renderLines() let parentNodeData = findNodeById(data, parentId) let index = null for (let i = 0; i < parentNodeData.children.length; i++) { const child = parentNodeData.children[i] if (child.id == currentNode.id) { index = i break } } if (index !== null) { parentNodeData.children.splice(index, 1) } cancelClickNode() }

树的遍历也可以动起来

树的遍历常规来说一般有两种,深度优先遍历和广度优先遍历。那么让树的遍历动起来是啥意思呢?不如先来看一下效果图吧:

以深度优先遍历为例,实现这个效果的思路如下:

  • dfs将数据节点取出来平铺到数组中
  • 遍历数组对每个节点进行动画:

    • 根据树上的节点复制一个新节点
    • 新节点先跳跃一下
    • 设置新节点的偏移属性,移动到内容区指定的位置

至于节点的偏移属性计算方式其实跟上文描述的绘制边计算差不多,这里就不再赘述了。

具体代码如下:

let isAnimate = false
const fakeContainer = document.querySelector('.fake-container')
const content = document.querySelector('.content')

//深度优先遍历
async function dfsTree() {
    if (isAnimate) {
        return
    }
    isAnimate = true
    const res = []
    dfs(data, res)
    for (let i = 0; i < res.length; i++) {
        const { id } = res[i]
        await showNodeAnimate(id)
    }
    isAnimate = false
}

function dfs(node, res) {
    res.push(node)
    if (node.children.length > 0) {
        node.children.forEach(child => {
            dfs(child, res)
        })
    }
}

function showNodeAnimate(id) {
    const perWidth = 50
    return new Promise(async(resolve, reject) => {
        const originNode = document.getElementById(id)
        const node = originNode.cloneNode(true)
        const { x, y } = getNodePosition(originNode)
        node.style = `
            position:absolute;
            left:${x}px;
            top:${y}px;
            border-color:red;
            z-index:99;
            margin:0;
            transition:all 1s
        `
        fakeContainer.appendChild(node)
        const contentChildren = content.children
        const { x: contentX, y: contentY } = getNodePosition(content)
        const delY = contentY
        let delX
        if (contentChildren.length === 0) {
            delX = contentX
        } else {
            const length = contentChildren.length
            delX = length * (perWidth + 20)
        }
        node.classList.add('jump') //节点跳跃动画
        await sleep(500)
        node.classList.remove('jump')
        originNode.style.backgroundColor = 'gray'
        node.style.top = delY + 'px'
        node.style.left = delX + 'px'
        await sleep(1000)
        content.appendChild(node)
        resolve()
    })

}

function sleep(timeout) {
    return new Promise(resolve => {
        setTimeout(() => {
            resolve()
        }, timeout);
    })
}

有了上面的showNodeAnimate这个函数之后,我们也很容易去实现广度优先遍历时的动画。因为只要把广度优先遍历的数据推进数组就行,剩下的事情就是循环调用showNodeAnimate即可。代码如下:

async function bfsTree() {
    if (isAnimate) {
        return
    }
    const res = bfs(data)
    isAnimate = true
    for (let i = 0; i < res.length; i++) {
        const { id } = res[i]
        await showNodeAnimate(id)
    }
    isAnimate = false
}

function bfs(node) {
    const tmp = []
    doBfs(node, tmp, 0)
    const res = []
    tmp.forEach(item => {
        res.push(...item)
    })
    return res

    function doBfs(node, res, level) {
        if (!res[level]) {
            res[level] = []
        }
        res[level].push(node)
        if (node.children.length > 0) {
            node.children.forEach(child => {
                doBfs(child, res, level + 1)
            })
        }
    }
}

最后

以上就是本文的所有内容,如果觉得有意思或者对你有帮助的话,点个赞和关注吧~也期待你在评论区与我交流

你可能感兴趣的:(可视化数据结构——让你的树跃然纸上)