题目:
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
参考:
http://www.blogjava.net/sandy/archive/2013/05/22/399605.html 引用一下题解部分
http://blog.csdn.net/fightforyourdream/article/details/17707187
“对付复杂问题的方法是从简单的特例来思考,从而找出规律。
先考察简单情况:
字符串长度为1:很明显,两个字符串必须完全相同才可以。
字符串长度为2:当s1="ab", s2只有"ab"或者"ba"才可以。
对于任意长度的字符串,我们可以把字符串s1分为a1,b1两个部分,s2分为a2,b2两个部分,满足((a1~a2) && (b1~b2))或者 ((a1~b2) && (a1~b2))”
“
这里我使用了一个三维数组boolean result[len][len][len],其中第一维为子串的长度,第二维为s1的起始索引,第三维为s2的起始索引。result[k][i][j]表示s1[i...i+k]是否可以由s2[j...j+k]变化得来”
if(s1==null || s2==null||s1.length()!=s2.length()) return false; int len = s1.length(); boolean[][][] dp = new boolean[len][len][len]; char[] c1 = s1.toCharArray(); char[] c2 = s2.toCharArray(); for(int i=0;i<len;i++){ for(int j=0;j<len;j++){ dp[0][i][j] = c1[i]==c2[j]; } } for(int k=2;k<=len;k++){ for(int i=len-k;i>=0;i--){ // the order is from the base, i.e. begin from the last position for(int j=len-k;j>=0;j--){ boolean r = false; // test if cut anywhere within k length, the scramble exists for(int cut=1;!r&&cut<k;cut++){ // !r&& 是因为必须每种cut都通过 r = (dp[cut-1][i][j]&&dp[k-cut-1][i+cut][j+cut])||(dp[cut-1][i][j+k-cut]&&dp[k-cut-1][i+cut][j]); //前前 && 后后 || 前后 && 后前 } dp[k-1][i][j]=r; // can r go through all cuts within k? } } } return dp[len-1][0][0]; }
类似题目应该有