目录
一、本文系统配置
二、编译
参考:
三、测试
1、配置ncnn、protobuf、opencv
2、模型文件拷贝
3、代码测试
在PC使用NCNN框架推理加速模型,需要先获取ncnn编译后的动静态库。
windows10
VS2019
CMake 3.18.4
编译前需要先下载protobuf和ncnn源码。
Windows下ncnn环境配置(VS2019)_逮仔的博客-CSDN博客_ncnn vs2019
(一)ncnn | Windows(VS2019)编译_Silence_Zzz的博客-CSDN博客_vs2019编译ncnn
ncnn和opencv在vs2022上创建工程推理示例_三叔家的猫的博客-CSDN博客_ncnn
如果不想编译也可以使用官方编译好的文件:Releases · Tencent/ncnn · GitHub
新建VS空项目工程。
以上编译是release版本,VS配置器选择Realease x64平台
VC++目录-包含目录:
VC++目录-库目录
链接器-输入-附加依赖项:
将ncnn下的example文件加下的模型及标签文件拷贝到VS创建的工程下,找一张分类图片做测试
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "net.h"
#include
#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#else
#include
#include
#include
#endif
#include
#include
static int detect_squeezenet(const cv::Mat& bgr, std::vector& cls_scores)
{
ncnn::Net squeezenet;
squeezenet.opt.use_vulkan_compute = true;
// the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
squeezenet.load_param("squeezenet_v1.1.param");
squeezenet.load_model("squeezenet_v1.1.bin");
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, 227, 227);
const float mean_vals[3] = {104.f, 117.f, 123.f};
in.substract_mean_normalize(mean_vals, 0);
ncnn::Extractor ex = squeezenet.create_extractor();
ex.input("data", in);
ncnn::Mat out;
ex.extract("prob", out);
cls_scores.resize(out.w);
for (int j = 0; j < out.w; j++)
{
cls_scores[j] = out[j];
}
return 0;
}
static int print_topk(const std::vector& cls_scores, int topk, std::vector& indexs, std::vector& scores)
{
// partial sort topk with index
int size = cls_scores.size();
std::vector > vec;
vec.resize(size);
for (int i = 0; i < size; i++)
{
vec[i] = std::make_pair(cls_scores[i], i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::greater >());
// print topk and score
for (int i = 0; i < topk; i++)
{
float score = vec[i].first;
int index = vec[i].second;
fprintf(stderr, "%d = %f\n", index, score);
indexs.push_back(index);
scores.push_back(score);
}
return 0;
}
static int load_labels(std::string path, std::vector& labels)
{
FILE* fp = fopen(path.c_str(), "r");
while (!feof(fp))
{
char str[1024];
fgets(str, 1024, fp);
std::string str_s(str);
if (str_s.length() > 0)
{
for (int i = 0; i < str_s.length(); i++)
{
if (str_s[i] == ' ')
{
std::string strr = str_s.substr(i, str_s.length() - i - 1);
labels.push_back(strr);
i = str_s.length();
}
}
}
}
}
int main(int argc, char** argv)
{
/*if (argc != 2)
{
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
return -1;
}*/
clock_t start = clock();
std::vectorlabels;
load_labels("synset_words.txt", labels);
const char* imagepath = "rabbit.jpg";
cv::Mat m = cv::imread(imagepath, 1);
if (m.empty())
{
fprintf(stderr, "cv::imread %s failed\n", imagepath);
return -1;
}
std::vectorindex;
std::vectorscore;
std::vector cls_scores;
detect_squeezenet(m, cls_scores);
print_topk(cls_scores, 3,index,score);
for (int i = 0; i < index.size(); i++)
{
cv::putText(m, labels[index[i]], cv::Point(10, 10 + i * 30), 0, 0.5, cv::Scalar(255, 100, 100), 2, 2);
}
clock_t end = clock();
std::cout << "运行时间:" << (double)(end - start) / CLOCKS_PER_SEC << std::endl;
cv::imshow("m", m);
//imwrite("dog_result.jpg", m);
cv::waitKey(0);
return 0;
}
运行结果: