李宏毅 梯度下降

梯度下降法

在回归问题的第三步中,需要解决下面的最优化问题:
李宏毅 梯度下降_第1张图片
这里的parameters是复数,即 θ指代一堆参数,比如上篇说到的 w 和 b 。

我们要找一组参数 θ ,让损失函数越小越好,这个问题可以用梯度下降法解决:

假设 θ有里面有两个参数 θ1,θ2 随机选取初始值在这里插入图片描述
李宏毅 梯度下降_第2张图片
然后分别计算初始点处,两个参数对 L的偏微分,然后 θ0减掉 η乘上偏微分的值,得到一组新的参数。同理反复进行这样的计算。黄色部分为简洁的写法,▽L(θ)即为梯度。
η 叫做Learning rates(学习速率)
李宏毅 梯度下降_第3张图片
上图举例将梯度下降法的计算过程进行可视化。

Tip1:调整学习速率

小心翼翼地调整学习率
李宏毅 梯度下降_第4张图片
上图左边黑色为损失函数的曲线,假设从左边最高点开始,如果学习率调整的刚刚好,比如红色的线,就能顺利找到最低点。如果学习率调整的太小,比如蓝色的线,就会走的太慢,虽然这种情况给足够多的时间也可以找到最低点,实际情况可能会等不及出结果。如果 学习率调整的有点大,比如绿色的线,就会在上面震荡,走不下去,永远无法到达最低点。还有可能非常大,比如黄色的线,直接就飞出去了,更新参数的时候只会发现损失函数越更新越大。

虽然这样的可视化可以很直观观察,但可视化也只是能在参数是一维或者二维的时候进行,更高维的情况已经无法可视化了。

解决方法就是上图右边的方案,将参数改变对损失函数的影响进行可视化。比如学习率太小(蓝色的线),损失函数下降的非常慢;学习率太大(绿色的线),损失函数下降很快,但马上就卡住不下降了;学习率特别大(黄色的线),损失函数就飞出去了;红色的就是差不多刚好,可以得到一个好的结果。

自适应学习率

举一个简单的思想:随着次数的增加,通过一些因子来减少学习率

  • 通常刚开始,初始点会距离最低点比较远,所以使用大一点的学习率

  • update好几次参数之后呢,比较靠近最低点了,此时减少学习率

  • 比如在这里插入图片描述,t是次数。随着次数的增加,ηt减小

学习率不能是一个值通用所有特征,不同的参数需要不同的学习率

Adagrad 算法

每个参数的学习率都把它除上之前微分的均方根。解释:

普通的梯度下降为:
李宏毅 梯度下降_第5张图片
Adagrad 可以做的更好:
李宏毅 梯度下降_第6张图片

Adagrad举例

下图是一个参数的更新过程
李宏毅 梯度下降_第7张图片
将 Adagrad 的式子进行化简:
李宏毅 梯度下降_第8张图片

Adagrad 存在的矛盾?

李宏毅 梯度下降_第9张图片
在 Adagrad 中,当梯度越大的时候,步伐应该越大,但下面分母又导致当梯度越大的时候,步伐会越小。

下图是一个直观的解释:
李宏毅 梯度下降_第10张图片
下面给一个正式的解释:
李宏毅 梯度下降_第11张图片
比如初始点在 x0,最低点为 -b/2a,最佳的步伐就是 x0x0 到最低点之间的距离 ∣x0+b/2a∣ ,也可以写成 ∣(2ax0+b)/2a∣.而刚好 ∣2ax0+b∣就是方程绝对值在 x0这一点的微分。

这样可以认为如果算出来的微分越大,则距离最低点越远。而且最好的步伐和微分的大小成正比。所以如果踏出去的步伐和微分成正比,它可能是比较好的。

结论1-1:梯度越大,就跟最低点的距离越远。

这个结论在多个参数的时候就不一定成立了。

多参数下结论不一定成立

对比不同的参数
李宏毅 梯度下降_第12张图片
上图左边是两个参数的损失函数,颜色代表损失函数的值。如果只考虑参数 w1,就像图中绿色的线,得到右边上图结果;如果只考虑参数 w2,就像图中蓝色的线,得到右边下图的结果。确实对于 a 和 b,结论1-1是成立的,同理 c 和 b 也成立。但是如果对比a和 c,就不成立了,c 比 a 大,但 c 距离最低点是比较近的。

所以结论1-1是在没有考虑跨参数对比的情况下,才能成立的。所以还不完善。

之前说到的最佳距离 ∣(2ax0+b)/2a∣,还有个分母 2a 。对function进行二次微分刚好可以得到:
在这里插入图片描述
所以最好的步伐应该是:
在这里插入图片描述
即不止和一次微分成正比,还和二次微分成反比。最好的step应该考虑到二次微分:
李宏毅 梯度下降_第13张图片

Adagrad 进一步的解释

再回到之前的 Adagrad
李宏毅 梯度下降_第14张图片
对于在这里插入图片描述就是希望再尽可能不增加过多运算的情况下模拟二次微分。(如果计算二次微分,在实际情况中可能会增加很多的时间消耗)

Tip2:随机梯度下降法

之前的梯度下降:
李宏毅 梯度下降_第15张图片
而随机梯度下降法更快:

损失函数不需要处理训练集所有的数据,选取一个例子
李宏毅 梯度下降_第16张图片
此时不需要像之前那样对所有的数据进行处理,只需要计算某一个例子的损失函数Ln,就可以赶紧update 梯度。
李宏毅 梯度下降_第17张图片
常规梯度下降法走一步要处理到所有二十个例子,但随机算法此时已经走了二十步(每处理一个例子就更新)

Tip3:特征缩放

比如有个函数:在这里插入图片描述两个输入的分布的范围很不一样,建议把他们的范围缩放,使得不同输入的范围是一样的。
李宏毅 梯度下降_第18张图片

为什么要这样做?

李宏毅 梯度下降_第19张图片
上图左边是 x1的scale比 x2要小很多,所以当 w1和 w2做同样的变化时,w1对 y 的变化影响是比较小的,x2对 y 的变化影响是比较大的。

坐标系中是两个参数的error surface(现在考虑左边蓝色),因为 w1 对 y的变化影响比较小,所以 w1对损失函数的影响比较小,w1对损失函数有比较小的微分,所以 w1方向上是比较平滑的。同理 x2对 y的影响比较大,所以 x2对损失函数的影响比较大,所以在 x2方向有比较尖的峡谷。

上图右边是两个参数scaling比较接近,右边的绿色图就比较接近圆形。

对于左边的情况,上面讲过这种狭长的情形不过不用Adagrad的话是比较难处理的,两个方向上需要不同的学习率,同一组学习率会搞不定它。而右边情形更新参数就会变得比较容易。左边的梯度下降并不是向着最低点方向走的,而是顺着等高线切线法线方向走的。但绿色就可以向着圆心(最低点)走,这样做参数更新也是比较有效率。

怎么做缩放?

方法非常多,这里举例一种常见的做法:
李宏毅 梯度下降_第20张图片
上图每一列都是一个例子,里面都有一组特征。

对每一个维度 i(绿色框)都计算平均数,记做 mimi;还要计算标准差,记做 σi然后用第 r个例子中的第 i 个输入,减掉平均数 mim i,然后除以标准差 σi,得到的结果是所有的维数都是 0,所有的方差都是 1

梯度下降的理论基础

问题

当用梯度下降解决问题:
在这里插入图片描述
每次更新参数 θ,都得到一个新的 θ,它都使得损失函数更小。即:
在这里插入图片描述
上述结论正确吗?

结论是不正确的。。。

数学理论

李宏毅 梯度下降_第21张图片
比如在 θ0处,可以在一个小范围的圆圈内找到损失函数细小的 θ1,不断的这样去寻找。
接下来就是如果在小圆圈内快速的找到最小值?…(数学推导没看了)

李宏毅 机器学习http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
https://datawhalechina.github.io/leeml-notes/#/chapter6/chapter6?id=adagrad-%e6%98%af%e4%bb%80%e4%b9%88%ef%bc%9f

你可能感兴趣的:(机器学习)