1、原子性(Atomicity)
原子性是指事务包含的一系列操作要么全部成功,要么全部回滚,不存在部分成功或者部分回滚,是一个不可分割的操作整体。
2、一致性(Consistency)
一致性是可以理解为事务对数据完整性约束的遵循,这些约束可能包括主键约束、唯一索引约束、外键约束等等。事务执行前后,数据都是合法的状态,不会违背任何的数据完整性
就拿转账来说,A和B加起来有5000块钱,不管A和B如何转账,转几次账,A和B加起来的钱永远都是5000块。
总之,可以理解为:一致性是为了保证数据的完整性。
3、隔离性(Isolation)
隔离性是指当多个用户并发操作数据库,比如操作同一张表,数据库为每一个用户开启的事务,不能被其他的事务所干扰或者影响,事务之间是彼此独立的。
4、永久性(Durability)
永久性是指一个事务一旦提交了,那么对数据库中数据的改变就是永久的,即使是在数据库发生故障时,也不会丢失事务提交的数据。
隔离性最简单的实现方式就是各个事务都串行执行了,如果前面的事务还没有执行完毕,后面的事务就都等待。但是这样的实现方式很明显并发效率不高,并不适合在实际环境中使用。
为了解决上述问题,实现不同程度的并发控制,SQL的标准制定者提出了不同的隔离级别:读未提交(read uncommitted)、读已提交(read committed)、可重复读(repeatable read)、串行读(serializable)。其中最高级隔离级别就是串行读,而在其他隔离级别中,由于事务是并发执行的,所以或多或少允许出现一些问题。见以下的矩阵表:
注意,MySQL的InnoDB引擎在提交读级别通过MVCC解决了不可重复读的问题,在可重复读级别通过间隙锁解决了幻读问题,具体见下面的分析。
1.Read uncommitted
读未提交,顾名思义,就是一个事务可以读取另一个未提交事务的数据。
事例:老板要给程序员发工资,程序员的工资是3.6万/月。但是发工资时老板不小心按错了数字,按成3.9万/月,该钱已经打到程序员的户口,但是事务还没有提交,就在这时,程序员去查看自己这个月的工资,发现比往常多了3千元,以为涨工资了非常高兴。但是老板及时发现了不对,马上回滚差点就提交了的事务,将数字改成3.6万再提交。
分析:实际程序员这个月的工资还是3.6万,但是程序员看到的是3.9万。他看到的是老板还没提交事务时的数据。这就是脏读。
那怎么解决脏读呢?Read committed!读提交,能解决脏读问题。
2.Read committed
读提交,顾名思义,就是一个事务要等另一个事务提交后才能读取数据。
事例:程序员拿着信用卡去享受生活(卡里当然是只有3.6万),当他埋单时(程序员事务开启),收费系统事先检测到他的卡里有3.6万,就在这个时候!!程序员的妻子要把钱全部转出充当家用,并提交。当收费系统准备扣款时,再检测卡里的金额,发现已经没钱了(第二次检测金额当然要等待妻子转出金额事务提交完)。程序员就会很郁闷,明明卡里是有钱的…
分析:这就是读提交,若有事务对数据进行更新(UPDATE)操作时,读操作事务要等待这个更新操作事务提交后才能读取数据,可以解决脏读问题。但在这个事例中,出现了一个事务范围内两个相同的查询却返回了不同数据,这就是不可重复读。
那怎么解决可能的不可重复读问题?Repeatable read !
3.Repeatable read
重复读,就是在开始读取数据(事务开启)时,不再允许修改操作
事例:程序员拿着信用卡去享受生活(卡里当然是只有3.6万),当他埋单时(事务开启,不允许其他事务的UPDATE修改操作),收费系统事先检测到他的卡里有3.6万。这个时候他的妻子不能转出金额了。接下来收费系统就可以扣款了。
分析:重复读可以解决不可重复读问题。写到这里,应该明白的一点就是,不可重复读对应的是修改,即UPDATE操作。但是可能还会有幻读问题。因为幻读问题对应的是插入INSERT操作,而不是UPDATE操作。
什么时候会出现幻读?
事例:程序员某一天去消费,花了2千元,然后他的妻子去查看他今天的消费记录(全表扫描FTS,妻子事务开启),看到确实是花了2千元,就在这个时候,程序员花了1万买了一部电脑,即新增INSERT了一条消费记录,并提交。当妻子打印程序员的消费记录清单时(妻子事务提交),发现花了1.2万元,似乎出现了幻觉,这就是幻读。
那怎么解决幻读问题?Serializable!
Serializable 序列化
Serializable 是最高的事务隔离级别,在该级别下,事务串行化顺序执行,可以避免脏读、不可重复读与幻读。但是这种事务隔离级别效率低下,比较耗数据库性能,一般不使用。
值得一提的是:大多数数据库默认的事务隔离级别是Read committed,比如Sql Server , Oracle。Mysql的默认隔离级别是Repeatable read。
1、锁定读和一致性非锁定读
锁定读:在一个事务中,主动给读加锁,如SELECT … LOCK IN SHARE MODE 和 SELECT … FOR UPDATE。分别加上了行共享锁和行排他锁。
一致性非锁定读:InnoDB使用MVCC向事务的查询提供某个时间点的数据库快照。查询会看到在该时间点之前提交的事务所做的更改,而不会看到稍后或未提交的事务所做的更改(本事务除外)。也就是说在开始了事务之后,事务看到的数据就都是事务开启那一刻的数据了,其他事务的后续修改不会在本次事务中可见。
Consistent read是InnoDB在RC和RR隔离级别处理SELECT语句的默认模式。一致性非锁定读不会对其访问的表设置任何锁,因此,在对表执行一致性非锁定读的同时,其它事务可以同时并发的读取或者修改它们。
2、当前读和快照读
当前读
读取的是最新版本,像UPDATE、DELETE、INSERT、SELECT … LOCK IN SHARE MODE、SELECT … FOR UPDATE这些操作都是一种当前读,为什么叫当前读?就是它读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。
快照读
读取的是快照版本,也就是历史版本,像不加锁的SELECT操作就是快照读,即不加锁的非阻塞读;快照读的前提是隔离级别不是未提交读和序列化读级别,因为未提交读总是读取最新的数据行,而不是符合当前事务版本的数据行,而序列化读则会对表加锁。
3、隐式锁定和显式锁定
隐式锁定
InnoDB在事务执行过程中,使用两阶段锁协议(不主动进行显示锁定的情况):
显式锁定
InnoDB也支持通过特定的语句进行显示锁定(存储引擎层)
select ... lock in share mode //共享锁
select ... for update //排他锁
MySQL Server层的显示锁定:
lock table
unlock table
了解完上面的概念后,我们来看下InnoDB的事务具体是怎么实现的(下面的读都指的是非主动加锁的select)
事务隔离级别 | 实现方式 |
---|---|
读未提交(RU) | 事务对当前被读取的数据不加锁,都是当前读; |
事务在更新某数据的瞬间(就是发生更新的瞬间),必须先对其加行级共享锁,直到事务结束才释放。 | |
读已提交(RC) | 事务对当前被读取的数据不加锁,且是快照读;事务在更新某数据的瞬间(就是发生更新的瞬间),必须先对其加行级排他锁(Record),直到事务结束才释放。通过快照,在这个级别MySQL就解决了不可重复读的问题 |
可重复读(RR) | 事务对当前被读取的数据不加锁,且是快照读;事务在更新某数据的瞬间(就是发生更新的瞬间),必须先对其加行级排他锁(Record,GAP,Next-Key),直到事务结束才释放。通过间隙锁,在这个级别MySQL就解决了幻读的问题 |
序列化读(S) | 事务在读取数据时,必须先对其加表级共享锁 ,直到事务结束才释放,都是当前读事务在更新数据时,必须先对其加表级排他锁 ,直到事务结束才释放。 |
可以看到,InnoDB通过MVCC很好的解决了读写冲突的问题,而且提前一个级别就解决了标准级别下会出现的幻读和不可重复读问题,大大提升了数据库的并发能力。
4.解决幻读
上面介绍可重复读的时候,那张图里标示着出现幻读的地方实际上在 MySQL 中并不会出现,MySQL 已经在可重复读隔离级别下解决了幻读的问题。
前面刚说了并发写问题的解决方式就是行锁,而解决幻读用的也是锁,叫做间隙锁,MySQL 把行锁和间隙锁合并在一起,解决了并发写和幻读的问题,这个锁叫做 Next-Key锁。
假设现在表中有两条记录,并且 age 字段已经添加了索引,两条记录 age 的值分别为 10 和 30。
此时,在数据库中会为索引维护一套B+树,用来快速定位行记录。B+索引树是有序的,所以会把这张表的索引分割成几个区间。
如图所示,分成了3 个区间,(负无穷,10]、(10,30]、(30,正无穷],在这3个区间是可以加间隙锁的。
之后,我用下面的两个事务演示一下加锁过程。
在事务A提交之前,事务B的插入操作只能等待,这就是间隙锁起得作用。当事务A执行
update user set name='风筝2号’ where age = 10;
的时候,由于条件 where age = 10 ,数据库不仅在 age =10 的行上添加了行锁,而且在这条记录的两边,也就是(负无穷,10]、(10,30]这两个区间加了间隙锁,从而导致事务B插入操作无法完成,只能等待事务A提交。不仅插入 age = 10 的记录需要等待事务A提交,age<10、10 这是有索引的情况,如果 age 不是索引列,那么数据库会为整个表加上间隙锁。所以,如果是没有索引的话,不管 age 是否大于等于30,都要等待事务A提交才可以成功插入。 MySQL 的 InnoDB 引擎才支持事务,其中可重复读是默认的隔离级别。 读未提交和串行化基本上是不需要考虑的隔离级别,前者不加锁限制,后者相当于单线程执行,效率太差。 读提交解决了脏读问题,行锁解决了并发更新的问题。并且 MySQL 在可重复读级别解决了幻读问题,是通过行锁和间隙锁的组合 Next-Key 锁实现的。四、总结