【2021年蓝桥省赛真题】赛前最后冲刺,省一我来啦

作者简介:大家好,我是Ceylan_,可以叫我CC ❣️    
个人主页:Ceylan_的博客
博主信息:平凡的大一学生,有着不平凡的梦

⚡希望大家多多支持一起进步~❤️
若有帮助,还请关注➕点赞➕收藏,不行的话我再努努力

【2021年蓝桥省赛真题】赛前最后冲刺,省一我来啦_第1张图片

 

目录

第一题 空间

❓问题描述

题目分析

代码演示

第二题 卡片

❓问题描述

题目分析

代码演示 

第三题 直线

❓问题描述

题目分析

代码演示

第四题 货物摆放

❓问题描述

题目分析

代码演示

第五题 路径

❓问题描述

题目分析

代码演示

第六题 时间显示

❓问题描述

题目分析

代码演示

第七题 砝码称重

❓问题描述

题目分析

代码演示

第八题 杨辉三角形

❓问题描述

题目分析

代码演示

第九题 双向排序

❓问题描述

题目分析

代码演示

第十题 括号序列

❓问题描述

题目分析

总结


第一题 空间

❓问题描述

小蓝准备用 256MB 的内存空间开一个数组,数组的每个元素都是 32 位 二进制整数,如果不考虑程序占用的空间和维护内存需要的辅助空间,请问 256MB 的空间可以存储多少个 32 位二进制整数?

题目分析

1MB=1024KB  1KB=1024字节   1字节=8位

代码演示

#include 
using namespace std;
int main()
{
	cout<<256*1024*1024*8/32;
	return 0;
}

第二题 卡片

❓问题描述

小蓝有很多数字卡片,每张卡片上都是数字 0 到 9。 小蓝准备用这些卡片来拼一些数,他想从 1 开始拼出正整数,每拼一个, 就保存起来,卡片就不能用来拼其它数了。 小蓝想知道自己能从 1 拼到多少。 例如,当小蓝有 30 张卡片,其中 0 到 9 各 3 张,则小蓝可以拼出 1 到 10, 但是拼 11 时卡片 1 已经只有一张了,不够拼出 11。 现在小蓝手里有 0 到 9 的卡片各 2021 张,共 20210 张,请问小蓝可以从 1 拼到多少? 

题目分析

从1开始拼,由数学规律可得,1是最快被拼完的数字,只需统计1出现的次数,就能得到答案。

代码演示 

#include
using namespace std;
int main()
{
    int i=0;
    int sum=2021;
    int b=0;
    for(i=1;i<20210;i++) 
    {
        int c=i;
        while(c) 
        {
            b=c%10;
            if(b==1&&sum>0) 
            {
                sum--;
            }
            c/=10;
        }
        if (sum==0) 
        {
            break;
        }
    }
    cout<

第三题 直线

❓问题描述

在平面直角坐标系中,两点可以确定一条直线。如果有多点在一条直线上,那么这些点中任意两点确定的直线是同一条。
给定平面上2×3个整点{(x,y)|0≤x<2,0≤y<3,x\varepsilon Z,y\varepsilonZ),即横坐标是0到1(包含0和1)之间的整数、纵坐标是0到2(包含0和2)之间的整数,的点。这些点一共确定了11条不同的直线。
给定平面上20×21个整点{(x,y)|0≤x<20.0≤y<21,x\varepsilonZ,y\varepsilonZ),即横坐标是0到19(包含0和19)之间的整数、纵坐标是0到20(包含0和20)之间的整数的点。请问这些点一共确定了多少条不同的直线。

题目分析

两点确定一条直线,我们可以记录每一种情况,然后判断是否重复。

直线一共三种情况

第一种,横直线,一共20种

第二种,竖直线,一共21种

第三种,斜直线,这种直线可由y=kx+b来表示,也就是说【k,b】可以表示一条直线

代码演示

#include 
using namespace std;
map,int> mp;

struct Point
{
	double x,y;
}p[25*25];

int main()
{
	int cnt=0;
	for(int i=0;i<20;i++)
	{
		for(int j=0;j<21;j++)
		{
    		p[cnt].x=i;
    		p[cnt].y=j;
    		++cnt;
		}
	}
  	int ans=0;
  	for(int i=0;i

第四题 货物摆放

❓问题描述

小蓝有一个超大的仓库,可以摆放很多货物。

现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、宽、高。

小蓝希望所有的货物最终摆成一个大的长方体。即在长、宽、高的方向上分别堆 L、W、H 的货物,满足 n=L×W×H。

给定 n,请问有多少种堆放货物的方案满足要求。

例如,当 n=4 时,有以下 6 种方案:1×1×4、1×2×2、1×4×1、2×1×2、2×2×1、4×1×1.

请问,当 n=2021041820210418(注意有 16 位数字)时,总共有多少种方案?

题目分析

暴力枚举每种符合条件的长宽高

当三边相等时,只有一种拼法,ans++

当两边相等时,有三种拼法,ans+=3

当三边不相等时,有六种拼法,ans+=6

代码演示

#include 
using namespace std;
int main()
{
    long long n=2021041820210418;
    long long i,j,k;
    int ans=0;
    for(i=1;i*i*i<=n;i++)
    {
        if(n%i==0)
        {
            for(j=i;i*j*j<=n;j++)
            {
                if(n/i%j==0)
                {
                    k=n/i/j;
                    if(i==j&&i==k) ans++;
                    if(i==j||i==k||j==k) ans+=3;
                    else ans+=6;
                }				
			}	
		}
	}
    cout<

第五题 路径

❓问题描述

小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图 中的最短路径。

小蓝的图由 2021 个结点组成,依次编号 1 至 2021。

对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点 之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条 长度为 a 和 b 的最小公倍数的无向边相连。

例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无 向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。

请计算,结点 1 和结点 2021 之间的最短路径长度是多少。

题目分析

最短路问题,想到了动态规划(孩子不会Floyd算法或DijkStra算法)

使用f[i]数组,表述从1到i所用的最短长度,每一次循环更新该点能到达位置的最短位置,一直到求出f[n]的最佳结果

代码演示

#include 
using namespace std;
int f[2022];
int main()
{
    for(int i=1;i<=2021;i++) 
	{
        for(int j=i+1;j<=i+21;j++) 
		{
            if(j>2021)
                break;
            if(f[j]==0)
                f[j]=f[i]+j*i/__gcd(i,j);
            else    
                f[j]=min(f[j],f[i]+j*i/__gcd(i,j));
        }
    }
    cout <

第六题 时间显示

❓问题描述

小蓝要和朋友合作开发一个时间显示的网站。

在服务器上,朋友已经获取了当前的时间,用一个整数表示,值为从 1970 年 1 月 1 日 00:00:00 到当前时刻经过的毫秒数。

现在,小蓝要在客户端显示出这个时间。小蓝不用显示出年月日,只需要显示出时分秒即可,毫秒也不用显示,直接舍去即可。

给定一个用整数表示的时间,请将这个时间对应的时分秒输出。

输入描述

输入一行包含一个整数,表示时间。

输出描述

输出时分秒表示的当前时间,格式形如 HH:MM:SS,其中 HH 表示时,值为 0​​​​ 到 23​​​​,MM 表示分,值为 0​​​​ 到 59​​​,SS 表示秒,值为 0​​ 到 59​。时、分、秒 不足两位时补前导 0。

题目分析

输入的是毫秒,转化成秒之后就简单了

代码演示

#include
using namespace std;
int main()
{
  int h;
  cin>>h;
  int hh,mm,ss;
  h = h%(24*60*60*1000);
  hh = h/(60*60*1000)%24;
  mm = h/(60*1000)%60;
  ss = h/(1000)%60;
  printf("%02d:%02d:%02d\n",hh,mm,ss);
  return 0;
}

第七题 砝码称重

❓问题描述

你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1,W2,⋅⋅⋅,WN。

请你计算一共可以称出多少种不同的重量? 注意砝码可以放在天平两边。

题目分析

类背包问题,设dp[i][j]为前i个砝码里能否称出j的重量

当不添加第i个砝码时dp[i][j]=dp[i-1][j]

当添加第i个砝码在物品端时dp[i][j]=dp[i-1][j-a[i]]

当添加第i个砝码在另一端时dp[i][j]=dp[i-1][j+a[i]]

代码演示

#include 
using namespace std;
int dp[200][2000000];
int main()
{
	int n;
	int a[200];
	int sum=0;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		sum+=a[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=sum;j++)
		{
			dp[i][j]=dp[i-1][j];
			if(dp[i][j]==0)
			{
				dp[i][a[i]]=1;
			}
        	if(dp[i-1][j+a[i]]==1) dp[i][j]=1;
      		if(dp[i-1][abs(j-a[i])]==1) dp[i][j]=1;
		}
	}
	int ans=0;
 	for(int j=1;j<=sum;j++)
	{
    if(dp[n][j]==1) ans++;
  	}
 	cout<

第八题 杨辉三角形

❓问题描述

下面的图形是著名的杨辉三角形:

【2021年蓝桥省赛真题】赛前最后冲刺,省一我来啦_第2张图片

如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下数列: 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,⋯

给定一个正整数 N,请你输出数列中第一次出现 N 是在第几个数?

题目分析

我们先观察杨辉三角的特点

第零列 第一列 第二列 第三列 第四列 第五列
第零行 1
第一行 1 1
第二行 1 2 1
第三行 1 3 3 1
第四行 1 4 6 4 1
第五行 1 5 10 10 5 1

由于杨辉三角高度重复且每行都是先增后减的,我们可以忽略右边的部分

第零列 第一列 第二列 第三列 第四列 第五列
第零行 1
第一行 1
第二行 1 2
第三行 1 3
第四行 1 4 6
第五行 1 5 10

此时我们发现规律,每一行右边的数一定比左边的数大,每一列下面的数一定比上面的大

因此我们只要从右往左一列一列二分查找最初出现的位置就可以了

二分查找法可以看看这个

代码演示

#include 
using namespace std;
int n;
int C(int x,int k)
{
	int ans=1;
	for(int i=x,j=1;j<=k;i--,j++)
	{
    	ans=ans*i/j;
    	if(ans>n)return ans;
	}
	return ans;
}
int check(int x)
{
	int l=2*x,r=max(n,l);
	while(l>1;
 	    if(C(mid,x)>=n)r=mid;
 	    else l=mid+1;
	}
	if(C(r,x)!=n)return 0;
	cout<<(int)(r+1)*r/2+x+1;
	return 1;
}
int main()
{
	cin>>n;
	for(int t=17;;t--)
	{
		if(check(t))break;
	}
	return 0;
}

第九题 双向排序

❓问题描述

给定序列 (a1,a2,⋅⋅⋅,an)=(1,2,⋅⋅⋅,n)即 ai=i。

小蓝将对这个序列进行 m 次操作,每次可能是将 a1,a2,⋯ ,aqi 降序排列,或者将 aqi,aqi+1,⋯ ,an​ 升序排列。

请求出操作完成后的序列。

输入描述

输入的第一行包含两个整数 n,m,分别表示序列的长度和操作次数。

接下来 m​ 行描述对序列的操作,其中第 i 行包含两个整数 pi,qi 表示操作类型和参数。当 pi=0 时,表示将 a1,a2,⋅⋅⋅,aqi​​​​ 降序排列;当 pi=1​ 时,表示将 aqi,aqi+1,⋯ ,an​​ 升序排列。

输出描述

输出一行,包含 n 个整数,相邻的整数之间使用一个空格分隔,表示操作完成后的序列。

题目分析

使用sort进行排序,只能过60%,有大佬会可以教教我

代码演示

#include
using namespace std;
int cmp1(int x,int y)
{
	return x>y;
}

int main()
{
	int n,m;
	cin>>n>>m;
	int a[n+2];
	for(int i=0;i>p>>q;
		if(p==0)
		{
			sort(a,a+q,cmp1);
		}
		if(p==1)
		{
			sort(a+q-1,a+n);
		}
				
	}
	for(int i=0;i

第十题 括号序列

❓问题描述

给定一个括号序列,要求尽可能少地添加若干括号使得括号序列变得合法,当添加完成后,会产生不同的添加结果,请问有多少种本质不同的添加结果。

两个结果是本质不同的是指存在某个位置一个结果是左括号,而另一个是右括号。

例如,对于括号序列 (((),只需要添加两个括号就能让其合法,有以下几种不同的添加结果:()()()、()(())、(())()、(()()) 和 ((()))​。

输入描述

输入一行包含一个字符串 s,表示给定的括号序列,序列中只有左括号和右括号。

输出描述

输出一个整数表示答案,答案可能很大,请输出答案除以 1000000007的余数。

题目分析

动态规划,好难呀~不会了

总结

暴力杯不是原来的暴力杯了,全是动态规划了,今年应该也有动规大题,大家可以练一练动规题目

【2021年蓝桥省赛真题】赛前最后冲刺,省一我来啦_第3张图片

     本人不才,如有错误,欢迎各位大佬在评论区指正。有帮助的话还请【关注点赞收藏】,不行的话我再努努力

 

你可能感兴趣的:(备战蓝桥,蓝桥杯,算法,c++,c语言,数据结构)