2017年蓝桥杯省赛B组C++真题

1. 购物单

小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。

这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。

取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。

以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
-------------------------
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
------------------------

需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。

请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。

特别提醒:不许携带计算器入场,也不能打开手机。

#include
using namespace std;
int main()
{
	double sum = 0.0;
	double a[] = { 
	180.90,10.25,56.14,104.65,100.30,
	297.15,26.75,130.62,240.28,270.62,
	115.87,247.34,73.21,101.00,79.54,
	278.44,199.26,12.97,166.30,125.50,
	84.98,113.35,166.57,42.56,81.90,
	131.78,255.89,109.17,146.69,139.33,
	141.16,154.74,59.42,85.44,293.70,
	261.79,11.30,268.27,128.29,251.03,
	208.39,128.88,62.06,225.87,12.89,
	34.28,62.16,129.12,218.37,289.69 };
	double b[] = 
	{ 
		0.88,0.65,0.9,0.9,0.88,0.5,0.65,0.5,0.58,0.8,0.88,0.95,
		0.9,0.5,0.5,0.7,0.5,0.9,0.78,0.58,0.9,0.68,0.5,0.9,
		0.95,0.8,0.78,0.9,0.68,0.65,0.78,0.8,0.8,0.68,0.88,
		0.65,0.88,0.58,0.88,0.8,0.75,0.75,0.9,0.75,0.75,0.75,
		0.58,0.5,0.5,0.8
	};
	for (int i = 0; i < 50; i++)
		sum += a[i] * b[i];
	cout << sum;
}
//输出:5136.86

答案:5200

2. 等差素数列

2,3,5,7,11,13,…是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。

2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!

有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:

长度为10的等差素数列,其公差最小值是多少?

注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。

#include
using namespace std;
int s[10001];
int mi = 10001;

bool judge(int n){
	int flag = 0;
	for(int i = 2; i < sqrt(n); i++){
		if(n%i == 0){
			flag = 1;
			break;
		}
	}
	if(flag == 0){
		return 1;
	}else{
		return 0;
	}
}

void dfs(int num, int j, int step){
	if(!s[num]) return;
	if(step == 10){
		if(mi > j) mi = j;
		return;
	}
	dfs(num+j, j, step+1);
}

int main(){
	memset(s, 0, sizeof(s)); 
	for(int i = 2; i < 10001; i++){
		if(judge(i)) s[i] = 1;
	}
	for(int i = 2; i < 10001; i++){
		if(s[i]) {
			for(int j = 1; j < 10001; j++){
				dfs(i, j, 1);	
			}
		}
	} 
	cout<

答案:210

3. 承压计算

X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。

每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。

7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。

假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。

工作人员发现,其中读数最小的电子秤的示数为:2086458231

请你推算出:读数最大的电子秤的示数为多少?

#include
using namespace std;
#define ll long long
double a[30][30]={
                             {7 },
                            {5, 8} ,
                           {7, 8,8 },
                          {9, 2, 7, 2}, 
                         {8, 1,4, 9, 1 },
                        {8, 1 ,8,8 ,4,1 },
                       {7, 9, 6 ,1, 4 ,5, 4}, 
                      {5, 6, 5, 5, 6, 9 ,5, 6}, 
                     {5,5, 4, 7, 9, 3, 5, 5,1 },
                    {7, 5 ,7, 9, 7, 4, 7, 3, 3,1}, 
                   {4, 6,4, 5, 5, 8 ,8, 3, 2, 4, 3}, 
                  {1 ,1 ,3 ,3 ,1 ,6 ,6 ,5, 5, 4, 4, 2}, 
                 {9 ,9 ,9 ,2 ,1 ,9 ,1 ,9 ,2 ,9 ,5 ,7 ,9}, 
                {4 ,3 ,3 ,7, 7, 9, 3, 6, 1, 3, 8, 8, 3, 7}, 
               {3 ,6 ,8 ,1 ,5 ,3 ,9 ,5 ,8 ,3 ,8 ,1 ,8 ,3 ,3}, 
              {8 ,3 ,2 ,3, 3, 5, 5, 8, 5, 4, 2, 8 ,6 ,7 ,6, 9}, 
             {8 ,1 ,8 ,1 ,8 ,4 ,6 ,2 ,2 ,1 ,7 ,9 ,4 ,2 ,3 ,3 ,4}, 
            {2 ,8 ,4 ,2 ,2 ,9 ,9, 2, 8, 3, 4, 9, 6, 3, 9, 4, 6, 9}, 
           {7 ,9 ,7 ,4 ,9 ,7 ,6 ,6 ,2 ,8 ,9 ,4 ,1 ,8 ,1 ,7 ,2 ,1 ,6}, 
          {9, 2, 8, 6, 4, 2, 7, 9 ,5 ,4, 1, 2, 5, 1, 7, 3, 9, 8, 3, 3}, 
         {5 ,2 ,1 ,6 ,7 ,9 ,3 ,2 ,8 ,9 ,5 ,5 ,6 ,6 ,6 ,2 ,1 ,8 ,7 ,9 ,9}, 
        {6 ,7 ,1 ,8 ,8 ,7, 5, 3, 6, 5, 4, 7, 3, 4, 6, 7, 8, 1, 3, 2, 7, 4}, 
       {2 ,2 ,6 ,3 ,5 ,3, 4 ,9 ,2 ,4 ,5 ,7 ,6 ,6 ,3 ,2 ,7 ,2 ,4 ,8 ,5 ,5 ,4}, 
      {7 ,4 ,4 ,5 ,8, 3, 3, 8, 1, 8, 6, 3, 2, 1, 6, 2, 6, 4, 6, 3, 8, 2, 9, 6}, 
     {1 ,2 ,4 ,1 ,3 ,3 ,5 ,3 ,4 ,9 ,6 ,3 ,8 ,6 ,5 ,9 ,1 ,5 ,3 ,2 ,6 ,8 ,8 ,5 ,3}, 
    {2 ,2 ,7, 9, 3, 3, 2, 8, 6, 9, 8, 4, 4, 9, 5, 8, 2, 6, 3, 4, 8, 4, 9, 3, 8, 8}, 
   {7 ,7 ,7 ,9 ,7 ,5 ,2 ,7 ,9 ,2 ,5 ,1 ,9 ,2 ,6 ,5, 3 ,9 ,3 ,5 ,7 ,3 ,5 ,4 ,2 ,8 ,9,},
  {7 ,7, 6, 6 ,8 ,7 ,5 ,5 ,8, 2, 4, 7, 7, 4, 7, 2, 6, 9, 2, 1, 8, 2, 9, 8, 5, 7, 3, 6} ,
 {5 ,9 ,4 ,5 ,5 ,7 ,5 ,5 ,6 ,3 ,5 ,3 ,9 ,5 ,8 ,9 ,5 ,4 ,1 ,2 ,6 ,1 ,4 ,3 ,5 ,3 ,2 ,4 ,1} 
};
int main()
{
  double mn=100000000,mx=0;
  for(int i=1;i<30;i++)
  {
    for(int j=0;j<=i;j++)
    {
      if(j==0)
        a[i][j]+=a[i-1][j]/2.0;
      else
        a[i][j]+=a[i-1][j-1]/2.0+a[i-1][j]/2.0;
    }
  }
  for(int j=0;j<30;j++)
  {
    if(a[29][j]>mx)
      mx=a[29][j];
    if(a[29][j]

4. 方格分割

6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。

如图:p1.png, p2.png, p3.png 就是可行的分割法。

试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。

请提交该整数,不要填写任何多余的内容或说明文字。

2017年蓝桥杯省赛B组C++真题_第1张图片

2017年蓝桥杯省赛B组C++真题_第2张图片

2017年蓝桥杯省赛B组C++真题_第3张图片

5. 取数位

求1个整数的第k位数字有很多种方法。
以下的方法就是一种。

// 求x用10进制表示时的数位长度
int len(int x){
	if(x<10) return 1;
	return len(x/10)+1;
}

// 取x的第k位数字
int f(int x, int k){
	if(len(x)-k==0) return x%10;
	return _____________________; //填空
}

int main(){
	int x = 23574;
	printf("%d\n", f(x,3));
	return 0;
}

对于题目中的测试数据,应该打印5。

请仔细分析源码,并补充划线部分所缺少的代码。

注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。

答案:f(x/10, k)

6. 最大公共子串

最大公共子串长度问题就是:
求两个串的所有子串中能够匹配上的最大长度是多少。

比如:“abcdkkk” 和 “baabcdadabc”,
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。

下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。

请分析该解法的思路,并补全划线部分缺失的代码。

#include 
#include 
#define N 256

int f(const char* s1, const char* s2){
int a[N][N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i,j;

memset(a,0,sizeof(int)*N*N);
int max = 0;
for(i=1; i<=len1; i++){
for(j=1; j<=len2; j++){
if(s1[i-1]==s2[j-1]) {
a[i][j] = __________________________; //填空
if(a[i][j] > max) max = a[i][j];
}
}
}

return max;
}

 

int main()
{
printf("%d\n", f("abcdkkk", "ba=abcdadabc"));
return 0;
}

 

注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。

答案: a[i-1][j-1] + 1

7. 日期问题

小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。

比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。

给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?

输入
----
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)

输入
----
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。

样例输入
----
02/03/04

样例输出
----
2002-03-04
2004-02-03
2004-03-02

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。

#include 
using namespace std;
struct node{
	int year;
	int month;
	int day;
};

bool cmp(node a, node b){
	if(a.year != b.year){
		return a.year < b.year;
	}else{
		if(a.month != b.month){
			return a.month < b.month; 
		}else{
			return a.day < b.day;
		}
	}
}

int main(){
	int a, b, c;
	scanf("%d/%d/%d", &a, &b, &c);
	struct node s[100];
	int k = 0;
	//第一种情况 
	if(a > 59){
		s[k].year = 19*100 + a;
	}else{
		s[k].year = 20*100 + a;
	}
	s[k].month = b;
	s[k++].day = c;
	//第二种情况
	if(c > 59){
		s[k].year = 19*100 + c;
	}else{
		s[k].year = 20*100 + c;
	} 
	s[k].month = a;
	s[k++].day = b;
	//第三种情况
	if(c > 59){
		s[k].year = 19*100 + c;
	}else{
		s[k].year = 20*100 + c;
	} 
	s[k].month = b;
	s[k++].day = a;
	sort(s, s+k, cmp);
	for(int i = 0; i < k; i++){
		printf("%d-%02d-%02d\n", s[i].year, s[i].month, s[i].day);
	} 
 	return 0;
}

8. 包子凑数

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

输入
----
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)

输出
----
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。

例如,
输入:
2
4
5

程序应该输出:
6

再例如,
输入:
2
4
6

程序应该输出:
INF

样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。

#include 
using namespace std;
int main(){
	int n;
	cin>>n;
	int s[n];
	int a[101];
	memset(a, 0, sizeof(a));
	for(int i = 0; i < n; i++){
		cin>>s[i];
	} 
	sort(s, s+n);
	int g = s[0];
	for(int i = 0; i < n; i++){
		g = __gcd(g, s[i]);
	}
	if(g != 1){
		cout<<"INF";
		return 0;
	}
	int dp[100001];
	memset(dp, 0, sizeof(dp));
	dp[0] = 1;
	for(int i = 0; i < n; i++){
		for(int j = 0; j+s[i] < 100001; j++){
			if(dp[j]){
				dp[j+s[i]] = 1;
			}
		}
	}
	int sum = 0;
	for(int i = 0; i < 100001; i++){
		if(dp[i] == 0){
			sum++;
		} 
	} 
	cout<

9. 分巧克力

儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。

为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:

\1. 形状是正方形,边长是整数
\2. 大小相同

例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?

输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。

输出
输出切出的正方形巧克力最大可能的边长。

样例输入:
2 10
6 5
5 6

样例输出:
2

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。

提交程序时,注意选择所期望的语言类型和编译器类型。

10. K倍区间

给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。

你能求出数列中总共有多少个K倍区间吗?

输入
-----
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)

输出
-----
输出一个整数,代表K倍区间的数目。

例如,
输入:
5 2
1
2
3
4
5

程序应该输出:
6

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。

提交程序时,注意选择所期望的语言类型和编译器类型。

后面三道编程题都比较简单

你可能感兴趣的:(蓝桥杯,java,编程语言)