文章来源于磐创AI,作者VK
磐创AI分享
作者 | Renu Khandelwal
编译 | VK
来源 | Medium
我们从以下问题开始
循环神经网络能解决人工神经网络和卷积神经网络存在的问题。
在哪里可以使用RNN?
RNN是什么以及它是如何工作的?
挑战RNN的消梯度失和梯度爆炸
LSTM和GRU如何解决这些挑战
假设我们正在写一条信息“Let’s meet for___”,我们需要预测下一个单词是什么。下一个词可以是午餐、晚餐、早餐或咖啡。我们更容易根据上下文作出推论。假设我们知道我们是在下午开会,并且这些信息一直存在于我们的记忆中,那么我们就可以很容易地预测我们可能会在午餐时见面。
当我们需要处理需要在多个时间步上的序列数据时,我们使用循环神经网络(RNN)
传统的神经网络和CNN需要一个固定的输入向量,在固定的层集上应用激活函数产生固定大小的输出。
例如,我们使用128×128大小的向量的输入图像来预测狗、猫或汽车的图像。我们不能用可变大小的图像来做预测
现在,如果我们需要对依赖于先前输入状态(如消息)的序列数据进行操作,或者序列数据可以在输入或输出中,或者同时在输入和输出中,而这正是我们使用RNNs的地方,该怎么办。
在RNN中,我们共享权重并将输出反馈给循环输入,这种循环公式有助于处理序列数据。
RNN利用连续的数据来推断谁在说话,说什么,下一个单词可能是什么等等。
RNN是一种神经网络,具有循环来保存信息。RNN被称为循环,因为它们对序列中的每个元素执行相同的任务,并且输出元素依赖于以前的元素或状态。这就是RNN如何持久化信息以使用上下文来推断。
RNN是一种具有循环的神经网络
RNN在哪里使用?
前面所述的RNN可以有一个或多个输入和一个或多个输出,即可变输入和可变输出。
RNN可用于
分类图像
图像采集
机器翻译
视频分类
情绪分析
RNN是如何工作的?
先解释符号。
h是隐藏状态
x为输入
y为输出
W是权重
t是时间步长
当我们在处理序列数据时,RNN在时间步t上取一个输入x。RNN在时间步t-1上取隐藏状态值来计算时间步t上的隐藏状态h并应用tanh激活函数。我们使用tanh或ReLU来表示输出和时间t的非线性关系。
将RNN展开为四层神经网络,每一步共享权值矩阵W。
隐藏状态连接来自前一个状态的信息,因此充当RNN的记忆。任何时间步的输出都取决于当前输入以及以前的状态。
与其他对每个隐藏层使用不同参数的深层神经网络不同,RNN在每个步骤共享相同的权重参数。
我们随机初始化权重矩阵,在训练过程中,我们需要找到矩阵的值,使我们有理想的行为,所以我们计算损失函数L。损失函数L是通过测量实际输出和预测输出之间的差异来计算的。用交叉熵函数计算L。
RNN,其中损失函数L是各层所有损失的总和
为了减少损失,我们使用反向传播,但与传统的神经网络不同,RNN在多个层次上共享权重,换句话说,它在所有时间步骤上共享权重。这样,每一步的误差梯度也取决于前一步的损失。
在上面的例子中,为了计算第4步的梯度,我们需要将前3步的损失和第4步的损失相加。这称为通过Time-BPPT的反向传播。
我们计算误差相对于权重的梯度,来为我们学习正确的权重,为我们获得理想的输出。
因为W在每一步中都被用到,直到最后的输出,我们从t=4反向传播到t=0。在传统的神经网络中,我们不共享权重,因此不需要对梯度进行求和,而在RNN中,我们共享权重,并且我们需要在每个时间步上对W的梯度进行求和。
在时间步t=0计算h的梯度涉及W的许多因素,因为我们需要通过每个RNN单元反向传播。即使我们不要权重矩阵,并且一次又一次地乘以相同的标量值,但是时间步如果特别大,比如说100个时间步,这将是一个挑战。
如果最大奇异值大于1,则梯度将爆炸,称为爆炸梯度。
如果最大奇异值小于1,则梯度将消失,称为消失梯度。
权重在所有层中共享,导致梯度爆炸或消失
对于梯度爆炸问题,我们可以使用梯度剪裁,其中我们可以预先设置一个阈值,如果梯度值大于阈值,我们可以剪裁它。
为了解决消失梯度问题,常用的方法是使用长短期记忆(LSTM)或门控循环单元(GRU)。
在我们的消息示例中,为了预测下一个单词,我们需要返回几个时间步骤来了解前面的单词。我们有可能在两个相关信息之间有足够的差距。随着差距的扩大,RNN很难学习和连接信息。但这反而是LSTM的强大功能。
LSTMs能够更快地学习长期依赖关系。LSTMs可以学习跨1000步的时间间隔。这是通过一种高效的基于梯度的算法实现的。
为了预测消息中的下一个单词,我们可以将上下文存储到消息的开头,这样我们就有了正确的上下文。这正是我们记忆的工作方式。
让我们深入了解一下LSTM架构,了解它是如何工作的
LSTMs的行为是在很长一段时间内记住信息,因此它需要知道要记住什么和忘记什么。
LSTM使用4个门,你可以将它们认为是否需要记住以前的状态。单元状态在LSTMs中起着关键作用。LSTM可以使用4个调节门来决定是否要从单元状态添加或删除信息。
这些门的作用就像水龙头,决定了应该通过多少信息。
LSTM的第一步是决定我们是需要记住还是忘记单元的状态。遗忘门使用Sigmoid激活函数,输出值为0或1。遗忘门的输出1告诉我们要保留该值,值0告诉我们要忘记该值。
第二步决定我们将在单元状态中存储哪些新信息。这有两部分:一部分是输入门,它通过使用sigmoid函数决定是否写入单元状态;另一部分是使用tanh激活函数决定有哪些新信息被加入。
在最后一步中,我们通过组合步骤1和步骤2的输出来创建单元状态,步骤1和步骤2的输出是将当前时间步的tanh激活函数应用于输出门的输出后乘以单元状态。Tanh激活函数给出-1和+1之间的输出范围
单元状态是单元的内部存储器,它将先前的单元状态乘以遗忘门,然后将新计算的隐藏状态(g)乘以输入门i的输出。
最后,输出将基于单元状态
从当前单元状态到前一单元状态的反向传播只有遗忘门的单元相乘,没有W的矩阵相乘,这就利用单元状态消除了消失和爆炸梯度问题
LSTM通过决定忘记什么、记住什么、更新哪些信息来决定何时以及如何在每个时间步骤转换记忆。这就是LSTMs如何帮助存储长期记忆。
以下LSTM如何对我们的消息进行预测的示例
GRU使用两个门,重置门和一个更新门,这与LSTM中的三个步骤不同。GRU没有内部记忆
重置门决定如何将新输入与前一个时间步的记忆相结合。
更新门决定了应该保留多少以前的记忆。更新门是我们在LSTM中理解的输入门和遗忘门的组合。
GRU是求解消失梯度问题的LSTM的一个简单变种
原文链接:https://medium.com/datadriveninvestor/recurrent-neural-network-rnn-52dd4f01b7e8
✄------------------------------------------------
看到这里,说明你喜欢这篇文章,请点击「在看」或顺手「转发」「点赞」。
往期精彩回顾
适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑获取一折本站知识星球优惠券,复制链接直接打开:https://t.zsxq.com/yFQV7am本站qq群1003271085。加入微信群请扫码进群: