- 使用Python调用OpenCV中的solvePnP函数
WzisTypescript
pythonopencv开发语言OpenCV
OpenCV是一个广泛使用的计算机视觉库,它提供了许多用于处理图像和视频的功能。其中一个重要的功能是解决透视投影问题,也就是通过已知的3D点和对应的2D图像点来计算相机的位姿。在OpenCV中,solvePnP函数就是用于解决这个问题的。solvePnP函数使用了一种称为Perspective-n-Point(PnP)问题的算法,它可以估计相机的旋转和平移向量,从而确定相机在3D空间中的位置。这对
- 遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
司南锤
深度学习遥感深度学习人工智能
1.计算资源与显存占用大尺寸图像:需要更高的显存和计算资源,可能限制训练时的批大小(batchsize),甚至导致无法训练。解决方案:通常将大图裁剪为小尺寸的补丁(patches),例如256x256或512x512。小尺寸图像:显存占用低,但可能丢失全局上下文信息(如大面积地物分布),影响模型对复杂场景的理解。2.模型感受野与上下文信息小尺寸输入:模型感受野受限,可能无法捕捉大范围地物(如河流、
- 如何解决小尺寸图像分割中的样本不均衡问题
司南锤
深度学习遥感笔记深度学习
1.生成对抗数据增强(Copy-PasteAugmentation)原理:将稀有目标的像素块复制粘贴到其他图像中,低成本生成平衡数据。适用场景:小目标(如车辆、船只)或极端稀疏类别(如灾害损毁区域)。PyTorch实现:importrandomdefcopy_paste_augment(image,mask,paste_image,paste_mask):#从粘贴数据中随机选择一个目标实例obj_
- cv python_python里面cv是什么意思
weixin_40004659
cvpython
OpenCV(OpenSourceComputerVisionLibrary)开放源代码计算机视觉库,主要算法涉及图像处理、计算机视觉和机器学习相关方法。OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV由一系列C函数和C++类构成,它有C,C++,Python和java接口,当前SDK(SoftwareDevelopmentKit软件
- 探索人工智能在计算机视觉领域的创新应用与挑战
戒了9
人工智能学习方法
一、引言1.1研究背景与意义在科技飞速发展的当下,人工智能(ArtificialIntelligence,AI)已然成为引领新一轮科技革命和产业变革的重要驱动力。作为AI领域的关键分支,计算机视觉(ComputerVision,CV)致力于让计算机具备像人类一样理解和解析图像、视频等视觉信息的能力,近年来取得了令人瞩目的进展。二者的深度融合,更是为众多领域带来了前所未有的变革与机遇。从技术发展历程
- 参考图像分割Referring Image Segmentation(RIS)和开放词汇语义分割Open Vocabulary Semantic Segmentation
余弦的倒数
深度学习CV笔记计算机视觉深度学习
一、参考图像分割基本概念:ReferringImageSegmentation(RIS)是一种图像分割技术,旨在根据自然语言表达来标记图像或视频中表示对象实例的像素。也就是根据自然语言描述来实现图像分割。旨在根据自然语言表达来标记图像或视频中的特定区域。在给定描述区域的自然语言文本的情况下,RIS需要在图像中找到相应的区域。这个任务是众所周知的具有挑战性的视觉和语言任务之一。RIS需要收集目标区域
- 人工智能技术的应用前景及未来发展
键盘上的蚂蚁-
人工智能生活
引言人工智能(AI)作为21世纪最具创新性和革命性的技术之一,正在全球范围内深刻地改变着我们的生产、工作和生活方式。随着深度学习、强化学习、自然语言处理(NLP)、计算机视觉(CV)等技术的飞速进展,AI不再仅仅是学术研究中的一个热点,而是渗透到各个行业,成为推动创新、优化生产和提升效率的核心力量。对于开发者来说,理解和掌握AI技术不仅是提升个人技能的途径,更是应对未来技术变革、抓住职业机遇的关键
- opencv2.4中SVD分解的几种调用方法
weixin_34342992
人工智能matlabc#
原帖地址:http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解。奇异值分解(singularvaluedecomposition,SVD)是一种可靠地正交矩阵分解法,但它比QR分解法要花上近十倍的计算时间。在matlab中,[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵
- SLAM源码分析(八)
wang_yq0728
1024程序员节slam
[email protected],ComputeH21函数,用DLT方法求解单应矩阵H。vP1:参考帧中归一化后的特征点;vP2:当前帧中归一化后的特征点;基本原理:|x'||h1h2h3||x||y'|=a|h4h5h6||y|简写:x'=aHx,a为一个尺度因子1||h7h8h9||1|使用DLT(directlineartranform)求解该模型x'=aHx--->(x
- ORB-SLAM2源码逐行解析系列(二):追踪线程
LDST_CSDN
计算机视觉人工智能自动驾驶
1.Tracking类(1)Tracking类的定义///Examples/Monocular/include/Tracking.hclassTracking{public:/***@brief构造函数**@param[in]pSys系统实例*@param[in]pVoc字典指针*@param[in]pFrameDrawer帧绘制器*@param[in]pMapDrawer地图绘制器*@param
- ORB-SLAM2源码学习:Initializer.cc⑨: Initializer::FindHomography找到最好的单应矩阵H
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉opencvubuntu人工智能矩阵学习
前言该函数功能的实现依赖于之前学习的三个函数特征点的坐标归一化、计算单应矩阵H以及它的评分函数。ORB-SLAM2源码学习:Initializer.cc②:Initializer::Normalize坐标归一化-CSDN博客ORB-SLAM2源码学习:Initializer.cc③:Initializer::ComputeH21计算单应矩阵-CSDN博客ORB-SLAM2源码学习:Initiali
- Python从0到100(四十):Web开发简介-从前端到后端(文末免费送书)
是Dream呀
python前端开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉人工智能ubuntu学习矩阵线性代数
前言这部分函数的实现依赖于之前学习的的检查三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客这里通过基础矩阵F来恢复位姿和三维点实际上是借助本质矩阵来进行的,相对于用单应矩阵H恢复位姿和三维点来说,它的解的结构较为简单其解的讨论形式也是比较简单的。1.函数声明boolInitializer::Recon
- ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉ubuntu人工智能矩阵学习
前言这个函数的实现依赖于之前学习的检验三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客位姿可能有多组解,到底哪个才是真正的解呢?方法是实践出真知。根据相应的论文我们分两种情况分别恢复出不同的解,最后得到一个最好的。每种可能的解都需要重复计算一次,最终根据如下条件选择最佳的解:1.最优解成功三角化点数目
- 基于OpenCV的答题卡识别系统(附全部源码)
Dong__ZW
opencv人工智能计算机视觉
本项目基于Python和OpenCV图像处理库,在Windows平台下开发了一个答题卡识别系统。系统运用精巧的计算机视觉算法,实现了批量识别答题卡并将信息导出至Excel表格的功能。这一解决方案使得答题卡的判卷过程变得轻便、高效且准确。首先,我们以Python语言作为开发基础,结合OpenCV图像处理库,为系统提供了强大的图像处理和分析能力。这使得我们能够在图像中准确地定位答题卡,检测填涂区域,以
- AWS微服务示例项目指南
缪玺彬
AWS微服务示例项目指南aws-microservicesAWSServerlessEvent-drivenMicroserviceswithusingAWSLambda,AWSDynamoDB,AWSAPIGateway,AWSEventBridge,AWSSQS,AWSCDKstandsforCloudDevelopmentKitforIaC—InfrastructureasCodetoola
- 计算机视觉目标检测-DETR网络
next_travel
计算机视觉目标检测人工智能
目录摘要abstractDETR目标检测网络详解二分图匹配和损失函数DETR总结总结摘要DETR(DEtectionTRansformer)是由FacebookAI提出的一种基于Transformer架构的端到端目标检测方法。它通过将目标检测建模为集合预测问题,摒弃了锚框设计和非极大值抑制(NMS)等复杂后处理步骤。DETR使用卷积神经网络提取图像特征,并将其通过位置编码转换为输入序列,送入Tra
- YOLO到XML:轻松转换标注文件,助力计算机视觉项目
m0_69670384
YOLOxml计算机视觉
YOLO到XML:轻松转换标注文件,助力计算机视觉项目在计算机视觉项目中,数据标注是至关重要的一步。不同的算法和框架可能需要不同格式的标注文件。YOLO(YouOnlyLookOnce)格式因其简洁和高效,在目标检测任务中备受欢迎。然而,有时我们可能需要将YOLO格式的标注文件转换为XML格式,以便与其他工具或框架兼容。本文将详细介绍如何将YOLO格式的标注文件批量转换为XML格式,助力你的计算机
- Python从0到100(六十一):机器学习实战-实现客户细分
是Dream呀
python机器学习开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 请问Python怎么安装vlfeat?
cda2024
python开发语言
在当今数据驱动的时代,图像处理和计算机视觉成为了许多前沿应用的核心技术之一。作为一门强大的编程语言,Python在这些领域中扮演着极其重要的角色。而vlfeat是一个广泛使用的计算机视觉库,它提供了许多经典的计算机视觉算法实现,如SIFT、HOG等。本文将详细介绍如何在Python中安装和使用vlfeat,帮助你在项目中高效地集成这些强大的工具。什么是vlfeat?vlfeat是一个开源的计算机视
- 双目视觉之获取三维坐标(立体校正、Q矩阵与三角测量原理)
乐平要加油啊
YOLO+双目视觉计算机视觉opencv
前言双目视觉是一种模拟人类立体视觉的计算机视觉技术,它通过两个相机从不同的角度拍摄同一个场景,然后利用三角测量原理,计算出场景中物体的三维坐标信息。这种技术在机器人导航、自动驾驶、物体跟踪、三维重建等领域有广泛的应用。获取三维坐标是双目视觉的核心任务之一。通过对左右相机拍摄的图像进行特征匹配和视差计算,我们可以得到场景中每个像素点的视差值。视差值表示了同一个物体在左右图像中的位置差异,它与物体距离
- 计算机视觉 ---图像读取与显示(OpenCV与Matplotlib)
两千连弹
计算机视觉计算机视觉opencvmatplotlib
前言本文分别介绍了使用OpenCV和Matplotlib进行图像读取与显示的方法,如cv2.imread()、cv2.imshow()、plt.imread()、plt.imshow()等,并提及了使用OpenCV时的注意事项。OpenCV与Matplotlib图像读取与显示的差异图像读取:OpenCV:使用cv2.imread()函数读取图像,默认读取的图像格式是BGR(蓝绿红)。Matplot
- 点云从入门到精通技术详解100篇-基于卷积和注意力机制的3D点云特征提取
格图素书
3d
目录知识储备点云获取技术分类一、图像衍生点云二、LiDAR三、RGB-D深度图像传感器基于3D激光slam的点云特征提取为什么要进行点云特征提取特征提取理论与代码编写点云特征提取主体类sample_and_groupfarthest_point_samplequery_ball_pointindex_points前言国内外研究现状卷积神经网络三维卷积神经网络稀疏卷积[21]基于3D点云数据的目标分
- Multi-Planar U-Net: 开源3D医疗图像分割项目推荐
郝茜润Respected
Multi-PlanarU-Net:开源3D医疗图像分割项目推荐MultiPlanarUNetMulti-PlanarUNetforautonomoussegmentationof3Dmedicalimages项目地址:https://gitcode.com/gh_mirrors/mu/MultiPlanarUNet1.项目基础介绍及编程语言Multi-PlanarU-Net是一个开源项目,旨在实
- U-Net 生物医学图像分割开源项目介绍
祝珺月
U-Net生物医学图像分割开源项目介绍unetU-NetBiomedicalImageSegmentation项目地址:https://gitcode.com/gh_mirrors/une/unet1.项目基础介绍及主要编程语言U-Net是由IntelAI开发的一个生物医学图像分割的开源项目。该项目基于TensorFlow和Keras框架,使用Python语言编写,旨在为医学图像分析提供高效的解决
- 深度ResUnet与ResUnet++:新一代的语义分割神器
倪澄莹George
深度ResUnet与ResUnet++:新一代的语义分割神器去发现同类优质开源项目:https://gitcode.com/在这个数据驱动的时代,深度学习模型在图像处理领域展现出了强大的潜力,尤其是在语义分割任务中。今天,我们向您推荐一个基于PyTorch实现的开源项目——DeepResUnet和ResUnet++。这两个模型源自于学术界的最新研究,旨在提高图像分割的准确性和效率。项目介绍这个开源
- OpenCV中添加高斯噪声到彩色图像和点云
LpmShell
opencv人工智能计算机视觉点云
在计算机视觉和图像处理中,噪声是一种常见的现象,可以对图像和点云数据产生不良影响。高斯噪声是一种常见的噪声类型,它具有正态分布的特点。在本文中,我们将使用OpenCV库来添加高斯噪声到彩色图像和点云数据,并提供相应的源代码示例。添加高斯噪声到彩色图像首先,我们将介绍如何使用OpenCV库向彩色图像添加高斯噪声。以下是添加高斯噪声的步骤:步骤1:导入必要的库importnumpyasnpimport
- 激光线扫标定和相机标定:中高级C++程序员与计算机视觉工程师的指南
m0_57781768
数码相机c++计算机视觉
激光线扫标定和相机标定:中高级C++程序员与计算机视觉工程师的指南简介在计算机视觉和机器人领域,激光标定和相机标定是实现高精度测量和检测的关键技术。激光线扫标定和相机标定在许多应用中都是必不可少的,如自动驾驶、工业检测、三维重建等。本文将详细介绍激光线扫标定和相机标定的基本概念、实现细节以及常见问题的解决方案。目标读者为中高级C++程序员和计算机视觉工程师,文章将提供详细的技术细节和代码示例,确保
- QT 笔记
繁缕怀夕
QT笔记
本文详述了QT的基础应用,其中包括基础控件应用、多线程等工具类使用、以及显示2D、3D图像等功能,适用于C++和计算机视觉领域的开发者。1、基础控件QLineEditQComboBoxQMenuQToolBar2、基础功能2.1、多线程线程QThread2.2、多语言静态显示动态切换3、QChart4、QGraphicsView5、PCL之VTK
- python机器学习
方安乐
pythonpython机器学习人工智能
Python机器学习是当前最为热门的机器学习领域之一,其简洁、易用、高效的特点,让越来越多的开发者开始探索其应用。本文将从以下几个方面介绍Python机器学习的基础知识和实践案例,帮助读者更好地理解和应用机器学习技术。前提Python机器学习的应用领域A.图像识别和计算机视觉B.自然语言处理和文本分析C.数据挖掘和推荐系统深度学习A.神经网络的基本原理B.常用的深度学习框架和算法C.深度学习在图像
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出