https://blog.csdn.net/weixin_40712763/article/details/82292046
安装(点击安装可以查看官方教程)
pip install tensorboardX
下载例程
#或者自己建立py文件
mkdir demo
cd demo
touch demo.py
gedit demo.py
#然后把下列代码复制进去
import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter
resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
for n_iter in range(100):
dummy_s1 = torch.rand(1)
dummy_s2 = torch.rand(1)
# data grouping by `slash`
writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)
writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
'xcosx': n_iter * np.cos(n_iter),
'arctanx': np.arctan(n_iter)}, n_iter)
dummy_img = torch.rand(32, 3, 64, 64) # output from network
if n_iter % 10 == 0:
x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
writer.add_image('Image', x, n_iter)
dummy_audio = torch.zeros(sample_rate * 2)
for i in range(x.size(0)):
# amplitude of sound should in [-1, 1]
dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
for name, param in resnet18.named_parameters():
writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)
# needs tensorboard 0.4RC or later
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)
dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]
features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()
#关闭demo.py文件
运行可视化
cd demo
python demo.py
tensorboard --logdir runs
#将会生成runs文件夹
tensorboard --logdir runs
#将会生成一个网址,在浏览器中打开即可
leon@231-XPS-8920:~/Leon/Software/tensorboardX-master$ tensorboard --logdir runs/
TensorBoard 1.11.0a20180901 at http://231-XPS-8920:6006 (Press CTRL+C to quit)
可视化效果呈现
过程中可能出现的一些问题
问题1:
E0902 09:17:37.198537 MainThread program.py:267] TensorBoard attempted to bind to port 6006, but it was already in use
问题原因:端口被其他进程占用
解决方法:
lsof -i:6006
得到:
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
Xvnc4 4969 amax 0u IPv4 655595 0t0 TCP *:x11-6 (LISTEN)
输入命令:
kill -9 4969
继续运行tensorboard,如果还出现该问题,关闭之前打开那个进程的终端,重新打开一次,启动tensorboard。
代码分析(参考了网络上的一些其他代码教程,整理了如下文件)
1.将以下代码复制,建立py文件,然后运行代码,按照上面的教程尝试自己生成过程文件,并且用tensorboard打开(这里是参考了另一个博客)
import torch
from tensorboardX import SummaryWriter
# 设计一个小网络
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.dense = torch.nn.Linear(in_features=10,out_features=1)
def forward(self,x):
return self.dense(x)
# 根据小网络实例化一个模型 net
net = Net()
# 创建文件写控制器,将之后的数值以protocol buffer格式写入到logs文件夹中,空的logs文件夹将被自动创建。
writer = SummaryWriter(log_dir='logs')
# 将网络net的结构写到logs里:
data = torch.rand(2,10)
writer.add_graph(net,input_to_model=(data,))
# 注意:pytorch模型不会记录其输入输出的大小,更不会记录每层输出的尺寸。
# 所以,tensorbaord需要一个假的数据 `data` 来探测网络各层输出大小,并指示输入尺寸。
# 写一个新的数值序列到logs内的文件里,比如sin正弦波。
for i in range(100):
x = torch.tensor(i/10,dtype=torch.float)
y = torch.sin(x)
# 写入数据的标注指定为 data/sin, 写入数据是y, 当前已迭代的步数是i。
writer.add_scalar('data/sin',y,i)
writer.close()
运行结果显示:
出现的问题:
1.建立了一个网络模型,在添加网络图的时候
writer.add_graph(model, input, verbose=True)出现问题
如下:
Traceback (most recent call last):
File "/home/leon/Leon/sparse-to-dense-Leon/main.py", line 352, in
main()
File "/home/leon/Leon/sparse-to-dense-Leon/main.py", line 185, in main
train(train_loader, model,criterion, optimizer, epoch) # train for one epoch
File "/home/leon/Leon/sparse-to-dense-Leon/main.py", line 224, in train
writer.add_graph(model, input, verbose=True)
File "/usr/local/lib/python3.5/site-packages/tensorboardX/writer.py", line 520, in add_graph
self.file_writer.add_graph(graph(model, input_to_model, verbose))
File "/usr/local/lib/python3.5/site-packages/tensorboardX/pytorch_graph.py", line 98, in graph
torch.onnx._optimize_trace(trace, False)
File "/usr/local/lib/python3.5/site-packages/torch/onnx/__init__.py", line 30, in _optimize_trace
trace.set_graph(utils._optimize_graph(trace.graph(), aten))
File "/usr/local/lib/python3.5/site-packages/torch/onnx/utils.py", line 95, in _optimize_graph
graph = torch._C._jit_pass_onnx(graph, aten)
File "/usr/local/lib/python3.5/site-packages/torch/onnx/__init__.py", line 40, in _run_symbolic_function
return utils._run_symbolic_function(*args, **kwargs)
File "/usr/local/lib/python3.5/site-packages/torch/onnx/utils.py", line 368, in _run_symbolic_function
return fn(g, *inputs, **attrs)
TypeError: upsample_bilinear2d() got an unexpected keyword argument 'align_corners' (occurred when translating upsample_bilinear2d)
调试最终发现问题是onnx模块导致的,这里的解决办法和之前的一个问题采用同样的解决办法:
https://blog.csdn.net/weixin_40712763/article/details/82315056
这个是由于pytorch版本太老导致的,直接
sudo pip install torch --upgrade
就可以解决
最后贴一张自己的网络图作为结束吧
Pytorch-tensorboard进阶