2022年MathorCup数学建模挑战赛【D题:移动通信网络站址规划和区域聚类问题】解题思路等全套资料~持续更新中~

2022mathorcup D题:移动通信网络站址规划和区域聚类问题

D题全套资料获取:

点击链接加入下载https://jq.qq.com/?_wv=1027&k=Pyynn39g

点击以上链接即可获取全网最全的解题资料,只要全网能找到的本链接均会更新,不需要去其他地方找资料,费时费钱~为大家节省找资料的时间!

问题描述:

移动通信技术规模飞速发展,运营规模也越来越大,导致带来的通信网络越来越复杂。随着5G的发展,通信的带宽越来越大,但基站的能覆盖范围越来越小,使得覆盖同样的区域,需要的基站数量变的更多。另外,基站和天线的种类也变多了。这就使得通信网络的规划特别是站址选择的问题变得越来越复杂。站址选择问题是:根据现网天线的覆盖情况,给出现网的弱覆盖区域,选择一定数量的点,使得在这些点上新建基站后,可以解决现网的弱覆盖区域的覆盖问题。例如,下图为某城市某区域的现网覆盖情况,其中红色的区域表示为弱覆盖区域。

2022年MathorCup数学建模挑战赛【D题:移动通信网络站址规划和区域聚类问题】解题思路等全套资料~持续更新中~_第1张图片

在实际网络规划中,考虑基站的建设成本和一些其他因素,有时候可能无法把所有弱覆盖区域都解决,这时候就需要考虑业务量的因素,尽量优先解决业务量高的弱覆盖区域。

为了便于计算,将给定的区域用很小的栅格进行划分,只考虑每个栅格的中心点,即任给一个区域,都可以划分成有限个点。每个点有一些属性值,包括:坐标,是否为弱覆盖点,业务量等。站址也只能选择区域内的点。某个点是否被规划基站覆盖可以按如下方法判断:

设选择基站的覆盖范围为d,基站所规划的点的坐标为:P0 (x0 , y0 ),则对于坐标为P(x, y)的点,若||P-P0||≤d,则认为该点被该基站覆盖,否则认为该点没有被该基站覆盖。

同时,实际中还需要考虑一个约束条件,即新建站址之间以及新建站址和现有站址之间的距离不能小于等于给定门限。

问题1:给定区域的大小是2500×2500个栅格即 2500×2500个点,其中横坐标范围是О到2499,纵坐标范围是О到2499。附件1中是筛选出该区域中的弱覆盖点的信息,包括每个点的坐标和业务量。给定2种基站,分别为:

宏基站(覆盖范围30,成本10)

微基站(覆盖范围10,成本1)

附件2中还给出了现网基站的坐标点,新建站址之以及新建站址和现有站址之间的距离的门限是10。

根据给定的信息和附件中的数据,进行站址规划,使得弱覆盖点总业务量的90%被规划基站覆盖。给出选择的站址的坐标以及每个站址选择的基站种类。站址的坐标只能在给定区域内的2500×2500个点中选择。

问题2:进一步考虑,实际中,每个站并不是完全的圆形覆盖,而是每个站上有 3个扇区,每个扇区指向一个方向。每个扇区在主方向上覆盖范围最大(宏基站为30,微基站为10),在主方向左右60度的范围内可以覆盖,覆盖范围按线性逐渐缩小,在60度的时候,覆盖范围为主方向覆盖范围的一半。超过60度,则无法被该扇区覆盖。

考虑每个站的任意⒉个扇区的主方向之间的夹角不能小于45度,同时仍然考虑上一问中的基站成本等其他条件,问在最优站址和扇区角度的条件下,新建站能否覆盖弱覆盖点总业务量的90%。若能,给出最优站址和扇区角度的结果;否则,给出给出最优站址和扇区角度的结果,并给出最多可以覆盖的弱覆盖点的总业务量的比例。

问题3:实际工作中,为了更好的解决弱覆盖问题,需要对弱覆盖点进行区域聚类,把距离近的弱覆盖点聚成一类,可以得到弱覆盖区域,这样可以对不同的弱覆盖区域分开管理使得可以更好的解决弱覆盖问题。

若2个弱覆盖点的距离不大于20,则这2个弱覆盖点应聚为一类,并且考虑聚类性质具有传递性,即若点A和点B是一类的,点B和点C是一类的,则点A、B和C都是一类的。试对所有弱覆盖点进行聚类,要求聚类所用方法的总时间复杂度尽量低。

D题全套资料获取:

点击链接加入下载https://jq.qq.com/?_wv=1027&k=Pyynn39g

点击以上链接即可获取全网最全的解题资料,只要全网能找到的本链接均会更新,不需要去其他地方找资料,费时费钱~为大家节省找资料的时间!

你可能感兴趣的:(数学建模,matlab,python)