Paillier算法详解及Java实现

      Paillier是公钥加密体系的一个代表,很多地方都有其详细介绍,本人最先接触的是维基百科上的介绍,但是晦涩难懂,然后在《基于同态加密系统的图像鲁棒可逆水印算法》文中读到其关于paillier加密算法的描述,自我感觉顺间豁达,于是提取有用信息并把自己的代码分享出来,希望对想理解paillier算法的人有用!

Paillier算法详解及Java实现_第1张图片

 

Paillier算法详解及Java实现_第2张图片

Paillier算法详解及Java实现_第3张图片

 

 给出Java代码:

package xinxianquan;

import java.math.*;
import java.util.*; 
/**
 * @author node
 *
 */
public class Paillier{
	//选取两个较大的质数p与q,lambda是p-1与q-1的最小公倍数
	 private BigInteger p, q, lambda; 
	 
	//n是p与q的乘积
	 public BigInteger n;
	 
	//n_square = n*n 
	 public BigInteger n_square; 
	 private BigInteger g;           
	 private int bitLength;
	 
	 public Paillier(int bitLengthVal, int certainty) {         
		   Key(bitLengthVal, certainty);     
		   } 
	 public Paillier() {          
		 Key(32, 64);      
		 }
	 public void Key(int bitLengthVal, int certainty) {
		 bitLength = bitLengthVal;
		//随机构造两个大素数,详情参见API,BigInteger的构造方法
		 p = new BigInteger(bitLength / 2, certainty, new Random());         
		 q = new BigInteger(bitLength / 2, certainty, new Random());  
		 
		 //n=p*q;
		 n = p.multiply(q); 
		 
		 //nsquare=n*n;        
		 n_square = n.multiply(n); 
		 g=new BigInteger("2");
		 
		//求p-1与q-1的乘积除于p-1于q-1的最大公约数
		 lambda = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE))
				 .divide(p.subtract(BigInteger.ONE).gcd(q.subtract(BigInteger.ONE))); 
		 
		//检测g是某满足要求
		 if (g.modPow(lambda, n_square).subtract(BigInteger.ONE).divide(n).gcd(n).intValue() != 1) {  
			 System.out.println("g的选取不合适!");             
			 System.exit(1); 
		 	}      
		 }
	 
	//给定r的加密
	    public BigInteger En(BigInteger m, BigInteger r) {          
	    	return g.modPow(m, n_square).multiply(r.modPow(n, n_square)).mod(n_square);     
	    	}
	    
	//随机生成r的加密
	    public BigInteger En(BigInteger m) {          
	    	BigInteger r = new BigInteger(bitLength, new Random());          
	        return g.modPow(m, n_square).multiply(r.modPow(n, n_square)).mod(n_square); 
	       } 
	    
	 //解密
	    public BigInteger De(BigInteger c) {          
	    	BigInteger u = g.modPow(lambda, n_square).subtract(BigInteger.ONE).divide(n).modInverse(n);         
	        return c.modPow(lambda, n_square).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n);      
	        } 
	    
	    public static void main(String[] args) {
	    	 Paillier paillier = new Paillier(); 
	    	 //创建两个大整数m1,m2:
	    	 BigInteger m1 = new BigInteger("20");          
	    	 BigInteger m2 = new BigInteger("60");         
	    	 System.out.println("原文是:");        
	    	 System.out.println(m1+"和"+m2);
	    	 
	    	 //将m1,m2加密得到em1,em2:        
	    	 BigInteger em1 = paillier.En(m1);          
	    	 BigInteger em2 = paillier.En(m2);  
	    	 
	    	 //加密后的结果        
	    	 System.out.println("m1加密结果"+em1);          
	    	 System.out.println("m2加密结果"+em2);
	    	 
	    	//解密后的结果        
	    	 System.out.println("m1解密结果"+paillier.De(em1));          
	    	 System.out.println("m2解密结果"+paillier.De(em2).toString());  
	    	 
	    	 /**
	    	  * paillier性质
	    	  * */
	    	 //加法同态
	    	 // m1+m2,求明文数值的和  
	    	 System.out.println("**************************求和********************");        
	    	 BigInteger sum_m1m2 = m1.add(m2).mod(paillier.n);          
	    	 System.out.println("明文数值的和 : " + sum_m1m2.toString());
	    	 System.out.println("测试"+m1.add(m2));
	    	 
	    	// em1+em2,求密文数值的和       
	    	 BigInteger product_em1em2 = em1.multiply(em2).mod(paillier.n_square);         
	    	 System.out.println("密文和: " + product_em1em2.toString());          
	    	 System.out.println("密文和解密: " + paillier.De(product_em1em2).toString());
	    	 
	    	 
	    	 // 数乘同态
	    	 System.out.println("***************************数乘*********************");        
	    	 //做乘法,先将两个数相乘,然后对n求模        
	    	 BigInteger multiply_m1m2 = m1.multiply(m2).mod(paillier.n);        
	    	 System.out.println("两个大整数相乘: " + multiply_m1m2.toString()); 
	    	 System.out.println("测试"+m1.multiply(m2));
	    	 
	    	//数乘,密文数,乘上某个明文数C的密文值等于=密文数的C次方对n平方求模         
	    	 BigInteger multiply_em1em2 = em1.modPow(m2, paillier.n_square);          
	    	 System.out.println("数乘密文值: " + multiply_em1em2.toString());          
	    	 System.out.println("数乘密文值解密: " + paillier.De(multiply_em1em2).toString());  
		}
}

运行结果: 

Paillier算法详解及Java实现_第4张图片

 

你可能感兴趣的:(学习笔记,paillier,同态加密,Java实现paillier)