- 2024年最新PyTorch深度学习项目实战100例数据集_python 深度学习项目演练
2401_84585440
程序员深度学习pythonpytorch
前言最近很多订阅了《PyTorch深度学习项目实战100例》的用户私信咨询有些数据集下载不了以及一些文章中没有给出数据集链接,为了解决这个问题,专门开设了本篇文章,提供数据集下载链接,打包100例的所有数据集。本专栏适用人群:深度学习初学者,刚刚接触PyTorch的用户群体,专栏将具体讲解如何快速搭建深度学习模型用自己的数据集实现深度学习小项目,快速让新手小白能够对基于深度学习方法有个基本的框架认
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- 专业 英语
程序员爱德华
英语专业英语
文章目录一、计算机1.计算机基础(1)计算机组成原理(2)计算机网络(3)数据库(4)编译原理(5)离散数学2.软件开发(1)编程词汇(2)开发术语(3)Linux(4)软件3.就业领域(1)职场(2)芯片(3)自动驾驶(4)嵌入式硬件4.深度学习(1)论文(2)深度学习DL(3)计算机视觉CV(4)自然语言处理NLP(5)推荐系统(6)计算机图形学二、数学三、机械、材料四、医药五、英美计量单位一
- element ui 中 Cascader 级联选择器实现 动态加载 动态禁用 入门_cascader动态加载(2)
2401_84619606
程序员前端面试学习
专业技能一般来说,面试官会根据你的简历内容去提问,但是技术基础还有需要自己去准备分类,形成自己的知识体系的。简单列一下我自己遇到的一些题HTML+CSSJavaScript前端框架前端性能优化前端监控模块化+项目构建代码管理信息安全网络协议浏览器算法与数据结构团队管理开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】最近得空把之前遇到的面试题做了一个整理,包括我本人自己
- 【项目实战】单元测试`spring-boot-starter-test` 简化了测试环境的搭建过程,让开发者能够更轻松地编写单元测试和集成测试。
本本本添哥
006-单元测试与测试技术单元测试集成测试数据库
一、技术概览1.1定义spring-boot-starter-test是SpringBoot框架的一部分spring-boot-starter-test简化了测试环境的搭建过程,让开发者能够更轻松地编写单元测试和集成测试。spring-boot-starter-test是一个专门为测试SpringBoot应用程序而设计的启动器(starter)spring-boot-starter-test集成了
- Agent 框架与应用
power-辰南
企业级AI项目实战人工智能大模型aiagent
1.1初识Agent:智能体的核心能力AIAgent是一种基于大模型的自主任务执行系统,能够通过感知、决策、规划和执行实现复杂目标的闭环达成。其核心能力可拆解为以下四部分:1.1.1感知能力(Perception)Agent通过多模态输入接口获取环境信息:•数据采集:集成传感器(如自动驾驶的激光雷达)、API(如天气数据接口)、文本/语音交互系统等;•多模态解析:支持文本、图像、语音的联合处理(如
- 前端实战】Vue2.0现代设计社区开发:卡片流布局+毛玻璃特效+炫酷动画 | 完整源码“ “【高级教程】仿Dribbble创意社区项目实战:Glass Morphism+响应式设计+前端开发“ “【2
南北极之间
web前端特效源码前端javascript网页设计htmlcssvuejs卡片
效果图【定制化开发服务,让您的项目领先一步】如有需求,直接私信留下您的联系方式。谢谢。我的邮箱:2351598671@qq.com完整代码
- redis 6.0下云迁移
余生逆风飞翔
redis数据库缓存
本次迁移为三节点172.16.0.10主172.16.0.6从172.16.0.14从一、数据迁移第一步:数据迁移a.将源redis的数据打成快照#连接redis执行如下命令BGSAVE在Redis中,BGSAVE命令用于在后台异步保存数据到磁盘,生成RDB文件。由于BGSAVE是异步执行的,因此需要通过一些方法来判断BGSAVE是否完成。以下是几种常用的方法:使用INFOPERSISTENCE命
- 车载SerDes芯片的重要性:自动驾驶与智能座舱的神经网络
空间机器人
Serdes知识合集自动驾驶神经网络人工智能
车载SerDes芯片的重要性:自动驾驶与智能座舱的神经网络在智能汽车时代,数据就是“燃料”,而SerDes芯片(串行器/解串器)就是让这些数据以光速奔跑的“血管”。随着自动驾驶(ADAS/ADS)和智能座舱的发展,摄像头、雷达、LiDAR及高清显示屏的数量激增,数据量呈指数级增长。如何高效、低延迟、低误码率地传输这些数据,成为决定自动驾驶安全性和座舱体验的关键问题。这时候,高性能车载SerDes芯
- 基于深度学习的视频修复
SEU-WYL
深度学习dnn深度学习音视频人工智能dnn
基于深度学习的视频修复是一种利用深度学习技术对视频进行处理和优化,以修复视频中的损坏部分、提升视频质量、去除噪声和增强视觉效果的方法。这种技术在电影修复、视频编辑、监控视频增强、自动驾驶和虚拟现实等多个领域具有广泛应用。以下是关于这一领域的系统介绍:1.任务和目标视频修复的主要任务和目标包括:去噪声:去除视频中的噪声,提升视频的视觉质量。去模糊:减少或消除视频中的模糊区域,使视频更清晰。去伪影:消
- 镜像世界架构揭秘:全球领先的视频孪生与三维重构技术
云栖道人
重构人工智能
在数字孪生技术的迅猛发展下,镜像世界浙江科技有限公司凭借其全球领先的视频孪生和三维重构技术,成为行业的破局者和新兴黑马。本文将深入解析其核心技术架构,探讨其如何通过技术创新推动智慧城市、自动驾驶、安防监控等多个领域的应用落地。一、镜像世界的技术架构概览镜像世界的技术架构围绕高效的数据采集、智能数据处理、三维建模与融合、实时交互及系统管理五大核心模块构建,形成完整的视频孪生技术体系。1.数据采集与输
- 清华团队发布多模态“神探”Migician:24.94%性能碾压,解锁多图定位的无限可能—— 安防、自动驾驶、医疗影像的AI“鹰眼”革命
花生糖@
AIGC学习资料库人工智能自动驾驶机器学习
引言:当AI学会“跨图追凶”2025年,安防监控摄像头每天产生3.5万亿帧画面,自动驾驶汽车每秒处理20路传感器图像,医疗影像科医生年均分析50万张CT片——多图像定位能力已成为AI落地的命门。清华大学联合北交大、华中科大发布的Migician模型,凭借24.94%的性能碾压优势,让AI首次实现“跨图像精准狙击”。这个突破性工具,正在重新定义从安防到医疗的20+行业规则。一、技术深析:Migici
- 驱动 AI 边缘计算新时代!高性能 i.MX 95 应用平台引领未来
WPG大大通
NXP产线ATU伊布小編(一部)人工智能边缘计算大大通方案ai汽车工业
智慧浪潮崛起:AI与边缘计算的时代正悄然深植于我们的日常生活之中,无论是火热的ChatGPT与DeepSeek语言模型,亦或是Meta智能眼镜,AI技术已经无形地影响着我们的生活。这股变革浪潮并未停歇,而是进一步催生了更高效、更贴近现实需求的技术演进。然而,随着AI应用场景的拓展,传统云计算在实时性、隐私保护与带宽等方面逐渐面临瓶颈。特别是在自动驾驶、智慧医疗、工业自动化等高精度应用中,毫秒级的延
- 云原生边缘计算:重塑分布式智能的时空边界
桂月二二
云原生边缘计算分布式
引言:算力向数据源头迁移的革命特斯拉自动驾驶系统每小时产生20TB边缘数据,时延要求低于50ms。中国移动5G边缘云实现ARPU值提升38%,华为云IEF平台将工业质检响应速度提升至15ms以内。ABIResearch预测2026年边缘AI芯片市场规模达520亿美元,KubeEdge管理边缘节点数突破千万级,单节点资源开销仅为K8s的1/8。一、边缘计算架构范式演进1.1技术架构对比矩阵特征维度中
- 智能算法安全优化与关键技术实践
智能计算研究中心
其他
内容概要智能算法的安全优化与关键技术实践已成为人工智能发展的核心命题。在医疗影像分析、金融风控、自动驾驶等场景中,联邦学习的分布式协作机制有效解决了数据孤岛问题,而生成对抗网络通过对抗训练增强数据生成能力,为小样本场景提供技术支撑。与此同时,可解释性算法通过特征重要性分析与决策路径可视化,显著提升模型透明度,降低黑箱风险。在技术实现层面,特征工程的自动化筛选与超参数动态调整策略优化了模型性能,结合
- 跨领域算法安全优化与实践路径
智能计算研究中心
其他
内容概要在算法技术加速渗透金融、医疗、自动驾驶等关键领域的背景下,跨领域算法的安全性与可落地性成为核心挑战。本书从联邦学习的隐私保护架构切入,探讨如何通过可解释性算法增强模型透明度,并引入量子计算与边缘计算的协同优化框架,构建兼顾效率与安全的技术范式。值得注意的是,医疗影像分析中的对抗攻击防御机制与生成对抗网络驱动的推荐系统创新,揭示了算法动态演进中的风险控制逻辑。技术整合不应局限于单一场景优化,
- Go语言通关指南:零基础玩转高并发编程(第Ⅴ部分)(第15章)-现代Go编程-项目实战开发(案例7:文件存储与分发系统)
双囍菜菜
golang开发语言后端
Go语言通关指南:零基础玩转高并发编程(第Ⅴ部分)(第15章)-现代Go编程-项目实战开发(案例7:文件存储与分发系统)文章目录Go语言通关指南:零基础玩转高并发编程(第Ⅴ部分)(第15章)-现代Go编程-项目实战开发(案例7:文件存储与分发系统)案例7:文件存储与分发系统1.功能点与技术点简介1.1.功能点1.2.技术点2.完整代码实现2.1.工程结构2.2.源码文件说明与完整代码2.2.1.`
- 极智芯 | 解读国产AI算力算能产品矩阵
极智视界
极智芯AI芯片算力国产化算能算力人工智能GPUTPU
欢迎关注我的公众号[极智视界],获取我的更多经验分享大家好,我是极智视界,本文分享一下解读国产AI算力华为昇腾产品矩阵。邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码和资源下载,链接:https://t.zsxq.com/0aiNxERDq算能属于自研TPU阵营,算能,有时候又叫比特大陆,有时候又叫算丰,我没有研究过他们公司的具体发展情况,所以关于称呼就不展开来。对于算能,我使用
- 特斯拉 FSD 算法深度剖析:软件层面全解读
python算法(魔法师版)
算法机器学习人工智能深度学习神经网络计算机视觉
一、引言特斯拉的FSD(FullSelf-Driving)系统作为自动驾驶领域的前沿成果,其软件层面的算法设计至关重要。本文将从软件的角度,深入探讨特斯拉FSD所采用的算法,包括感知、规划、控制等多个方面,以期为读者呈现一个全面、详细的FSD算法全景图。二、特斯拉FSD系统概述特斯拉FSD系统旨在实现车辆的完全自动驾驶,涵盖从感知周围环境到做出驾驶决策的全过程。该系统依托于特斯拉自研的硬件平台和软
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- AI自动驾驶:2025有戏,Uber受益先于特斯拉
gange574
人工智能自动驾驶机器学习AI写作大数据aiAI编程
自动驾驶:2025有戏,Uber受益先于特斯拉近期消息,优步将与Waymo在奥斯汀推出合作服务(夏季将在亚特兰大跟进)。在过去一段时间,市场情绪似乎已经转变,认为自动驾驶汽车的推广将越来越需要需求端平台,而优步作为最大的此类平台处于有利地位。比亚迪(BYD)的公告也在投资者心中凸显了一个重要观点:完全自动驾驶(FSD)市场越分散,优步作为最大的需求聚合商的地位就越有利。Techcrunch报道称,
- 计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
程序员Linc
计算机视觉计算机视觉机器学习深度学习机器视觉
一、计算机视觉(CV)与机器视觉(MV):从学术研究到工业落地的分水岭1.定义与目标差异计算机视觉(CV)目标是赋予计算机类似人类的视觉理解能力,通过算法对图像或视频中的目标进行识别、跟踪和语义理解。其核心是研究如何从二维图像反推三维世界的结构和规律。例如,自动驾驶中通过多摄像头融合实现道路场景理解,属于典型的CV任务。机器视觉(MV)聚焦于工业场景的自动化检测与控制,强调实时性和精准性。MV系统
- 具身智能行业
[shenhonglei]
具身觉醒:智能进化的未来之路人工智能机器人
具身智能行业综合分析资源下载-具身智能导图.xmind资源下载-具身智能导图.xmind一、行业概况定义与核心特征具身智能(EmbodiedAI)指通过物理实体(如机器人、自动驾驶设备等)与环境的动态交互,实现感知、认知和行动控制的智能系统。其核心特征是“知行合一”,强调通过实际交互提升智能水平,而非仅依赖数据训练。技术融合:结合人工智能(AI)、机器人技术、多模态大模型
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 【项目实战】Spring AI集成DeepSeek实战指南(硅基流动平台版)
zxg45
AI大模型spring人工智能javadeepseek硅基流动AI大模型
SpringAI集成DeepSeek实战指南(硅基流动平台版)本文手把手教你通过SpringAI框架集成国产大模型DeepSeek,结合硅基流动平台实现智能对话功能。本方案支持普通对话和流式响应两种模式,完整代码已通过测试,可直接用于生产环境。一、环境准备开发工具JDK17+Maven3.9+SpringBoot3.2.x+(推荐3.3.0)硅基流动平台配置登录硅基流动官网,新用户赠送2000万t
- FFmpeg 6.0实现视频硬解码
大王算法
ffmpeg音视频c++1024程序员节
目录一、背景二、FFmpeg6.0实现视频硬解码的操作步骤2.1、安装FFmpeg6.02.2、配置FFmpeg解码器2.3、转换视频流格式2.4、在Surface设备上显示视频三、总结一、背景随着计算机技术的不断发展,视频编解码技术也在不断进步。FFmpeg作为一款强大的开源音视频处理工具,广泛应用于音视频处理的各种场景。而在实际的应用中,我们常常需要将解码后的视频流输出到特定的显示设备,如Mi
- 初识Redis
我不是少爷.
Redisredis数据库缓存
目录导航Redis核心架构解析多平台环境搭建指南可视化工具生态集群架构设计与实现虚拟化环境构建方案版本演进与6.0特性1.Redis核心架构解析1.1数据模型革命基础类型二进制安全字段存储嵌套结构顺序存储阻塞操作去重集合集合运算排序集合String计数器图片缓存Hash用户画像商品详情List消息队列任务调度Set标签系统好友推荐ZSet实时排行榜1.2持久化双引擎对比特性RDB快照AOF日志持久
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =