深度学习实战代码40例(2)——CNN理论与实战

1.概述

1.1概念        

         神经网络(neual networks)是人工智能研究领域的一部分,当前最流行的神经网络是深度卷积神经网络(deep convolutional neural networks, CNNs),虽然卷积网络也存在浅层结构,但是因为准确度和表现力等原因很少使用。目前提到CNNs和卷积神经网络,学术界和工业界不再进行特意区分,一般都指深层结构的卷积神经网络,层数从”几层“到”几十上百“不定。CNNs目前在很多很多研究领域取得了巨大的成功,例如: 语音识别,图像识别,图像分割,自然语言处理等。

1.2网络结构

1.2.1卷积

        基础的CNN由 卷积(convolution), 激活(activation), and 池化(pooling)三种结构组成。CNN输出的结果是每幅图像的特定特征空间。当处理图像分类任务时,我们会把CNN输出的特征空间作为全连接层或全连接神经网络(fully connected neural network, FCN)的输入,用全连接层来完成从输入图像到标签集的映射,即分类。当然,整个过程最重要的工作就是如何通过训练数据迭代调整网络权重,也就是后向传播算法。目前主流的卷积神经网络(CNNs),比如VGG, ResNet都是由简单的CNN调整,组合而来。

你可能感兴趣的:(深度学习实战代码40例,python,tensorflow,卷积神经网络)