IM即时通讯开发如何设计能支撑百万并发的数据库

相信看到这个标题,很多人的第一反应就是:对数据库进行分库分表啊!但是实际上,数据库层面的分库分表到底是用来干什么的,其不同的作用如何应对不同的场景,我觉得很多同学可能都没搞清楚。
小型系统的典型数据库单机架构和明显的瓶颈

假如我们现在是一个小创业公司,注册用户就 20 万,每天活跃用户就 1 万,每天单表数据量就 1000,然后高峰期每秒钟并发请求最多就 10。

天呐!就这种系统,随便找一个有几年工作经验的高级工程师,然后带几个年轻工程师,随便干干都可以做出来。

因为这样的系统,实际上主要就是在前期进行快速的业务功能开发,搞一个单块系统部署在一台服务器上,然后连接一个数据库就可以了。

接着大家就是不停地在一个工程里填充进去各种业务代码,尽快把公司的业务支撑起来。

结果呢,没想到我们运气这么好,碰上个优秀的 CEO 带着我们走上了康庄大道!

公司业务发展迅猛,过了几个月,注册用户数达到了 2000 万!每天活跃用户数 100 万!每天单表新增数据量达到 50 万条!高峰期每秒请求量达到 1 万!

同时公司还顺带着融资了两轮,估值达到了惊人的几亿美金!一只朝气蓬勃的幼年独角兽的节奏!

好吧,现在大家感觉压力已经有点大了,为啥呢?因为每天单表新增 50 万条数据,一个月就多 1500 万条数据,一年下来单表会达到上亿条数据。

经过一段时间的运行,现在咱们单表已经两三千万条数据了,勉强还能支撑着。

但是,眼见着系统访问数据库的性能怎么越来越差呢,单表数据量越来越大,拖垮了一些复杂查询 SQL 的性能啊!

然后高峰期请求现在是每秒 1 万,咱们的系统在线上部署了 20 台机器,平均每台机器每秒支撑 500 请求,这个还能抗住,没啥大问题。但是数据库层面呢?

如果说此时你还是一台数据库服务器在支撑每秒上万的请求,负责任的告诉你,每次高峰期会出现下述问题:

1)你的数据库服务器的磁盘 IO、网络带宽、CPU 负载、内存消耗,都会达到非常高的情况,数据库所在服务器的整体负载会非常重,甚至都快不堪重负了;
2)高峰期时,本来你单表数据量就很大,SQL 性能就不太好,这时加上你的数据库服务器负载太高导致性能下降,就会发现你的 SQL 性能更差了;
3)最明显的一个感觉,就是你的系统在高峰期各个功能都运行的很慢,用户体验很差,点一个按钮可能要几十秒才出来结果;
4)如果你运气不太好,数据库服务器的配置不是特别的高的话,弄不好你还会经历数据库宕机的情况,因为负载太高对数据库压力太大了。

多台服务器分库支撑高并发读写

首先我们先考虑第一个问题,数据库每秒上万的并发请求应该如何来支撑呢?

要搞清楚这个问题,先得明白一般数据库部署在什么配置的服务器上。通常来说,假如你用普通配置的服务器来部署数据库,那也起码是 16 核 32G 的机器配置。

这种非常普通的机器配置部署的数据库,一般线上的经验是:不要让其每秒请求支撑超过 2000,一般控制在 2000 左右。

IM即时通讯开发如何设计能支撑百万并发的数据库_第1张图片

控制在这个程度,一般数据库负载相对合理,不会带来太大的压力,没有太大的宕机风险。

所以首先第一步,就是在上万并发请求的场景下,部署个 5 台服务器,每台服务器上都部署一个数据库实例。即时通讯聊天软件开发可以咨询蔚可云开发。

然后每个数据库实例里,都创建一个一样的库,比如说订单库。此时在 5 台服务器上都有一个订单库,名字可以类似为:db_order_01、db_order_02 等等。

然后每个订单库里,都有一个相同的表,比如说订单库里有订单信息表,那么此时 5 个订单库里都有一个订单信息表。

比如:db_order_01 库里就有一个 tb_order_01 表,db_order_02 库里就有一个 tb_order_02 表。

这就实现了一个基本的分库分表的思路,原来的一台数据库服务器变成了 5 台数据库服务器,原来的一个库变成了 5 个库,原来的一张表变成了 5 个表。

然后你在写入数据的时候,需要借助数据库中间件,比如 Sharding-JDBC,或者是 MyCAT,都可以。

你可以根据比如订单 ID 来 Hash 后按 5 取模,比如每天订单表新增 50 万数据,此时其中 10 万条数据会落入 db_order_01 库的 tb_order_01 表,另外 10 万条数据会落入 db_order_02 库的 tb_order_02 表,以此类推。

这样就可以把数据均匀分散在 5 台服务器上了,查询的时候,也可以通过订单ID 来 hash 取模,去对应的服务器上的数据库里,从对应的表里查询那条数据出来即可。

做这一步有什么好处呢?第一个好处,原来比如订单表就一张表,这个时候不就成了 5 张表了么,那么每个表的数据就变成 1/5 了。

假设订单表一年有 1 亿条数据,此时 5 张表里每张表一年就 2000 万数据了。

那么假设当前订单表里已经有 2000 万数据了,此时做了上述拆分,每个表里就只有 400 万数据了。

而且每天新增 50 万数据的话,那么每个表才新增 10 万数据,这样是不是初步缓解了单表数据量过大影响系统性能的问题?

另外就是每秒 1 万请求到 5 台数据库上,每台数据库就承载每秒 2000 的请求,是不是一下子把每台数据库服务器的并发请求降低到了安全范围内?

这样,降低了数据库的高峰期负载,同时还保证了高峰期的性能。
大量分表来保证海量数据下的查询性能

IM即时通讯开发如何设计能支撑百万并发的数据库_第2张图片

但是上述的数据库架构还有一个问题,那就是单表数据量还是过大,现在订单表才分为了 5 张表,那么如果订单一年有 1 亿条,每个表就有 2000 万条,这也还是太大了。

所以还应该继续分表,大量分表。比如可以把订单表一共拆分为 1024 张表,这样 1 亿数据量的话,分散到每个表里也就才 10 万量级的数据量,然后这上千张表分散在 5 台数据库里就可以了。

在写入数据的时候,需要做两次路由,先对订单 ID Hash 后对数据库的数量取模,可以路由到一台数据库上,然后再对那台数据库上的表数量取模,就可以路由到数据库上的一个表里了。

通过这个步骤,就可以让每个表里的数据量非常小,每年 1 亿数据增长,但是到每个表里才 10 万条数据增长,这个系统运行 10 年,每个表里可能才百万级的数据量。

在分库分表之后你必然要面对的一个问题,就是 ID 咋生成?因为要是一个表分成多个表之后,每个表的 ID 都是从 1 开始累加自增长,那肯定不对啊。

举个例子,你的订单表拆分为了 1024 张订单表,每个表的 ID 都从 1 开始累加,这个肯定有问题了!

你的系统就没办法根据表主键来查询订单了,比如 ID = 50 这个订单,在每个表里都有!

所以此时就需要分布式架构下的全局唯一 ID 生成的方案了,在分库分表之后,对于插入数据库中的核心 ID,不能直接简单使用表自增 ID,要全局生成唯一 ID,然后插入各个表中,保证每个表内的某个 ID,全局唯一。

比如说订单表虽然拆分为了 1024 张表,但是 ID = 50 这个订单,只会存在于一个表里。

那么如何实现全局唯一 ID 呢?有以下几种方案,我们一一一来看看。

这个方案就是说你的系统每次要生成一个 ID,都是往一个独立库的一个独立表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 ID。拿到这个 ID 之后再往对应的分库分表里去写入。

IM即时通讯开发如何设计能支撑百万并发的数据库_第3张图片

比如说你有一个 auto_id 库,里面就一个表,叫做 auto_id 表,有一个 ID 是自增长的。

那么你每次要获取一个全局唯一 ID,直接往这个表里插入一条记录,获取一个全局唯一 ID即可,然后这个全局唯一 ID 就可以插入订单的分库分表中。

这个方案的好处就是方便简单,谁都会用。缺点就是单库生成自增 ID,要是高并发的话,就会有瓶颈的,因为 auto_id 库要是承载个每秒几万并发,肯定是不现实的了。
读写分离来支撑按需扩容以及性能提升

这个时候整体效果已经挺不错了,大量分表的策略保证可能未来 10 年,每个表的数据量都不会太大,这可以保证单表内的 SQL 执行效率和性能。

然后多台数据库的拆分方式,可以保证每台数据库服务器承载一部分的读写请求,降低每台服务器的负载。

但是此时还有一个问题,假如说每台数据库服务器承载每秒 2000 的请求,然后其中 400 请求是写入,1600 请求是查询。

也就是说,增删改的 SQL 才占到了 20% 的比例,80% 的请求是查询。此时假如说随着用户量越来越大,又变成每台服务器承载 4000 请求了。

那么其中 800 请求是写入,3200 请求是查询,如果说你按照目前的情况来扩容,就需要增加一台数据库服务器。

但是此时可能就会涉及到表的迁移,因为需要迁移一部分表到新的数据库服务器上去,是不是很麻烦?

其实完全没必要,数据库一般都支持读写分离,也就是做主从架构。

写入的时候写入主数据库服务器,查询的时候读取从数据库服务器,就可以让一个表的读写请求分开落地到不同的数据库上去执行。

这样的话,假如写入主库的请求是每秒 400,查询从库的请求是每秒 1600。

你可能感兴趣的:(即时通讯)