Python人脸识别考勤打卡系统

Python人脸识别考勤打卡系统

如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助!

运行结果如下:

 主要代码:

import random
import cv2
import numpy
import datetime
import os
import time
import cv2 as cv
import numpy as np
import threading
from PIL import Image, ImageFont, ImageDraw

database_file_path = './resources/data.db'
picture_dir_path = "./resources/pictures"
trainer_file_path = './resources/Trainer/trainer.yml'
font_file_path = './resources/simsun.ttc'
zsc_circle_file_path = './resources/zsc.jpg'
zsc_rectangle_file_path = './resources/zsc.png'
haarcascade_frontalface_file_path = './resources/haarcascade_frontalface_default.xml'
capture_opt = 0  # 摄像头参数,0,1为本机摄像头

# 继承wx库里面的Frame类来使用
class MainFrame(wx.Frame):
    def __init__(self):
        # 初始化窗体数据
        wx.Frame.__init__(self, None, -1, '人脸识别考勤系统', pos=(100, 100), size=(1337, 600))
        panel = wx.Panel(self, -1)
        sizer = wx.BoxSizer(wx.HORIZONTAL)
        sizer1 = wx.BoxSizer(wx.VERTICAL)
        sizer2 = wx.BoxSizer(wx.VERTICAL)
        font = wx.Font(15, wx.ROMAN, wx.NORMAL, wx.BOLD)

        # 设置窗口以及托盘图标
        icon = wx.Icon()
        icon.CopyFromBitmap(wx.Bitmap(wx.Image((zsc_circle_file_path), wx.BITMAP_TYPE_JPEG)))
        self.SetIcon(icon)

        # 设置左边背景学院logo
        image = wx.Image(zsc_rectangle_file_path, wx.BITMAP_TYPE_PNG).ConvertToBitmap()
        self.background = wx.StaticBitmap(panel, -1, bitmap=image, style=wx.ALIGN_CENTER)
        sizer1.Add(self.background, proportion=10, flag=wx.ALIGN_CENTER, border=10)

        # 设置采集人脸按钮
        self.command1 = wx.Button(panel, -1, '采集人脸')
        self.command1.SetFont(font)
        self.command1.SetBackgroundColour('#3299CC')
        sizer1.Add(self.command1, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)

        # 设置训练数据按钮
        self.command2 = wx.Button(panel, -1, '训练数据')
        self.command2.SetFont(font)
        self.command2.SetBackgroundColour('#DBDB70')
        sizer1.Add(self.command2, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)

        # 设置人脸识别按钮
        self.command3 = wx.Button(panel, -1, '识别打卡')
        self.command3.SetFont(font)
        self.command3.SetBackgroundColour('#32CC32')
        sizer1.Add(self.command3, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)

        # 设置退出系统按钮
        self.command4 = wx.Button(panel, -1, '关闭摄像头')
        self.command4.SetFont(font)
        self.command4.SetBackgroundColour((random.randint(1, 255), random.randint(0, 255), random.randint(0, 255)))
        sizer1.Add(self.command4, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)

        # 设置消息提示文本
        self.text5 = wx.StaticText(panel, -1, '\n\n', style=wx.ALIGN_CENTER)
        self.text5.SetFont(font)
        self.text5.SetForegroundColour('Red')
        sizer1.Add(self.text5, proportion=15, flag=wx.ALL | wx.EXPAND, border=10)

        # 设置个人信息文本
        self.text6 = wx.StaticText(panel, -1, '姓名:')
        self.text7 = wx.StaticText(panel, -1, '学号:')
        self.text8 = wx.StaticText(panel, -1, '学院:')
        sizer1.Add(self.text6, proportion=3, flag=wx.LEFT, border=0)
        sizer1.Add(self.text7, proportion=3, flag=wx.LEFT, border=0)
        sizer1.Add(self.text8, proportion=3, flag=wx.LEFT, border=0)

        # 把分布局全部加入整体顶级布局
        sizer.Add(sizer1, flag=wx.EXPAND | wx.ALL, border=20)


        # 设置右上边消息提示文本
        sizer3 = wx.BoxSizer(wx.HORIZONTAL)
        font = wx.Font(12, wx.ROMAN, wx.NORMAL, wx.BOLD)
        self.text9 = wx.StaticText(panel, -1, '', style=wx.ALIGN_LEFT)
        self.text9.SetFont(font)
        self.text9.SetForegroundColour('brown')
        self.text9.SetLabel(u''+'您好,欢迎使用人脸考勤系统!')

        self.text10 = wx.StaticText(panel, -1, '', style=wx.ALIGN_RIGHT)
        self.text10.SetFont(font)
        self.text10.SetForegroundColour('Blue')
        self.data_num = 0
        self.updateSumData()
        sizer3.Add(self.text9, proportion=1, flag= wx.ALL|wx.EXPAND, border=10)
        sizer3.Add(self.text10, proportion=1, flag= wx.ALL|wx.EXPAND, border=10)

        sizer2.Add(sizer3, proportion=1, flag=wx.EXPAND | wx.ALL, border=0)

        # 封面图片
        self.image_cover = wx.Image(zsc_circle_file_path, wx.BITMAP_TYPE_ANY).Scale(575, 460)
        self.bmp = wx.StaticBitmap(panel, -1, wx.Bitmap(self.image_cover))
        sizer2.Add(self.bmp, proportion=1, flag=wx.ALL|wx.EXPAND ,border=0)


        # 加入顶级布局
        sizer.Add(sizer2, flag=wx.EXPAND | wx.ALL, border=10)

        # 实例化数据库操作对象
        self.mySqlDao = MySQLDao(self)
        self.grid = MyGrid(panel, self.mySqlDao)
        self.grid.updateGrid()
        # 打卡记录表
        sizer.Add(self.grid, proportion=1, flag=wx.EXPAND | wx.ALL, border=10)


        panel.SetSizer(sizer)

        # 四个按钮对应的事件
        self.command1.Bind(wx.EVT_BUTTON, self.command1_event)
        self.command4.Bind(wx.EVT_BUTTON, self.command4_event)
        self.command3.Bind(wx.EVT_BUTTON, self.command3_event)
        self.command2.Bind(wx.EVT_BUTTON, self.command2_event)

        # 关闭事件
        self.Bind(wx.EVT_CLOSE,self.onClose)

        # 窗口居中,显示
        self.Center()
        self.Show()

        # 控制摄像头的开启与关闭
        self.recognition = False
        self.collected = False

    '''
        主窗体关闭事件
    '''
    def onClose(self,event):
        self.command4_event(event)
        # 等待子线程完成 再关闭,防止不正常退出
        time.sleep(1)
        self.Destroy()

    '''
        采集数据按钮的响应事件
    '''
    def command1_event(self, event):
        self.text6.SetLabel('姓名:')
        self.text7.SetLabel('学号:')
        self.text8.SetLabel('学院:')
        self.text5.SetLabel(u'\n温馨提示:\n' + '⚪正在进学生信息录入...')
        self.text5.Update()

        collectFrame = CollectFrame(self,self.mySqlDao)
        collectFrame.Show()

    '''
        训练数据按钮的响应事件
    '''
    def command2_event(self, event):
        self.trainData()

    '''
        识别打卡按钮的响应事件
    '''
    def command3_event(self, event):
        self.text5.SetLabel(u'')
        self.recognition = False
        t1 = threading.Thread(target=self.recognitionFace)
        t1.start()

    '''
        关闭摄像头按钮的响应事件
    '''
    def command4_event(self, event):
        if self.collected == False:
            self.collected = True
        if self.recognition == False:
            self.recognition = True




    def updateSumData(self):
        self.data_num = 0
        for list in os.listdir(picture_dir_path):
            if len(os.listdir(picture_dir_path + '/' + list)) >= 200:
                self.data_num += 1
        self.text10.SetLabel(u'当前已采集人脸数据的人数:' + str(self.data_num))
        self.text10.Update()


    '''
        @Author:Himit_ZH
        @Function:处理收集人脸每一帧生成图片存入对应文件夹
    '''
    def collect(self,face_id):

        self.text5.SetLabel(u'\n温馨提示:\n' + '请看向摄像头\n准备采集200张人脸图片...')

        count = 0  # 统计照片数量
        path = picture_dir_path+"/Stu_" + str(face_id)  # 人脸图片数据的储存路径
        # 读取视频
        cap = cv.VideoCapture(capture_opt)
        print(cap.isOpened())
        if cap.isOpened() == False:
            self.text5.SetLabel(u'\n错误提示:\n' + '×采集人脸数据失败!\n原因:未能成功打开摄像头')
            return

        # 加载特征数据
        face_detector = cv.CascadeClassifier(haarcascade_frontalface_file_path)
        if not os.path.exists(path):  # 如果没有对应文件夹,自动生成
            os.makedirs(path)
        while self.collected == False:
            flag, frame = cap.read()
            # print('flag:',flag,'frame.shape:',frame.shape)
            if not flag:
                break
            # 将图片灰度
            gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
            faces = face_detector.detectMultiScale(gray, 1.1, 3)
            if len(faces) > 1:  # 一帧出现两张照片丢弃,原因:有人乱入,也有可能人脸识别出现差错
                continue
            # 框选人脸,for循环保证一个能检测的实时动态视频流
            for x, y, w, h in faces:
                cv.rectangle(frame, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
                count += 1
                cv.imwrite(path + '/' + str(count) + '.png', gray[y:y + h, x:x + w])
                # # 显示图片
                # cv.imshow('Camera', frame)
                # 将一帧帧图片显示在UI中
                image1 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                image2 = cv2.resize(image1, (575, 460))
                height, width = image2.shape[:2]
                pic = wx.Bitmap.FromBuffer(width, height, image2)
                # 显示图片在panel上
                self.bmp.SetBitmap(pic)
                self.bmp.Update()

            self.text9.SetLabel(u'温馨提示:\n' + '已采集'+ str(count)+'张人脸照片')
            if count >= 200:  #默认采集200张照片
                break
        # 关闭资源
        if count >=200:
            self.text5.SetLabel(u'\n温馨提示:\n' + '✔已成功采集到人脸数据!')
            self.updateSumData()
        else:
            self.text5.SetLabel(u'\n错误提示:\n' + '×采集人脸数据失败!\n未能收集到200张人脸数据!')
            # 删除该文件夹下的所有数据
            ls = os.listdir(path)
            for file_path in ls:
                f_path = os.path.join(path, file_path)
                os.remove(f_path)
            os.rmdir(path)

        cv.destroyAllWindows()
        cap.release()
        self.bmp.SetBitmap(wx.Bitmap(self.image_cover))

    '''
        @Author:Himit_ZH
        @Function:遍历指定文件夹里面的人脸数据,根据文件夹名字,训练对应数据
    '''
    def trainData(self):
        self.text5.SetLabel(u'\n温馨提示:\n' + '⚪正在整合训练的人脸数据\n请稍后...')
        # 图片路径
        path = picture_dir_path
        facesSamples = []
        imageFiles = []
        ids = []
        for root, dirs, files in os.walk(path):
            # root 表示当前正在访问的文件夹路径
            # dirs 表示该文件夹下的子目录名list
            # files 表示该文件夹下的文件list
            # 遍历文件
            for file in files:
                imageFiles.append(os.path.join(root, file))
        # 检测人脸的模型数据
        face_detector = cv2.CascadeClassifier(haarcascade_frontalface_file_path)
        # 遍历列表中的图片
        stu_map =  self.mySqlDao.getIdfromSql()
        for imagefile in imageFiles:  # 获得所有文件名字
            imagefile = imagefile.replace('\\', '/')
            sno = imagefile.split('/')[3].split('_')[1]
            if stu_map.get(sno):
                PIL_img = Image.open(imagefile).convert('L')  # 打开图片并且转为灰度图片
                # 将图像转换为数组
                img_numpy = np.array(PIL_img, 'uint8')
                faces = face_detector.detectMultiScale(img_numpy)
                for x, y, w, h in faces:
                    facesSamples.append(img_numpy[y:y + h, x:x + w])
                    ids.append(int(stu_map.get(sno)))




if __name__ == '__main__':
    app = wx.App()
    app.locale = wx.Locale(wx.LANGUAGE_CHINESE_SIMPLIFIED)
    frame = MainFrame()
    app.MainLoop()

 运行结果如下:

 

Python, C++, PHP语言学习参考实例连接

C++学习参考实例

C++实现图形界面五子棋游戏源码:

https://blog.csdn.net/alicema1111/article/details/90035420

C++实现图形界面五子棋游戏源码2:

https://blog.csdn.net/alicema1111/article/details/106479579

C++ OpenCV相片视频人脸识别统计人数:

https://blog.csdn.net/alicema1111/article/details/105833928

VS2017+PCL开发环境配置:

https://blog.csdn.net/alicema1111/article/details/106877145

VS2017+Qt+PCL点云开发环境配置:

https://blog.csdn.net/alicema1111/article/details/105433636

C++ OpenCV汽车检测障碍物与测距:

https://blog.csdn.net/alicema1111/article/details/105833449

Windows VS2017安装配置PCL点云库:

https://blog.csdn.net/alicema1111/article/details/105111110

VS+VTK+Dicom(dcm)+CT影像切片窗体界面显示源码

https://blog.csdn.net/alicema1111/article/details/106994839

Python学习参考实例

Python相片更换背景颜色qt窗体程序:

https://blog.csdn.net/alicema1111/article/details/106919140

OpenCV汽车识别检测数量统计:

https://blog.csdn.net/alicema1111/article/details/106597260

OpenCV视频识别检测人数跟踪统计:

https://blog.csdn.net/alicema1111/article/details/106113042

OpenCV米粒检测数量统计:

https://blog.csdn.net/alicema1111/article/details/106089697

opencv人脸识别与变形哈哈镜:

https://blog.csdn.net/alicema1111/article/details/105833123

OpenCV人脸检测打卡系统:

https://blog.csdn.net/alicema1111/article/details/105315066

Python+OpenCV摄像头人脸识别:

https://blog.csdn.net/alicema1111/article/details/105107286

Python+Opencv识别视频统计人数:

https://blog.csdn.net/alicema1111/article/details/103804032

Python+OpenCV图像人脸识别人数统计

https://blog.csdn.net/alicema1111/article/details/105378639

python人脸头发身体部位识别人数统计

https://blog.csdn.net/alicema1111/article/details/116424942

VS+QT+VTK三维网格图像显示GUI

https://blog.csdn.net/alicema1111/article/details/117060734

PHP网页框架

PHP Laravel框架安装与配置后台管理前台页面显示:

https://blog.csdn.net/alicema1111/article/details/106686523

你可能感兴趣的:(Python,人脸识别,python,opencv,计算机视觉,图像识别)